

NEW EUROCODE2 PROJECT

DETAILED CALCULATION REPORT

Milan, 27/06/2024 Update 2.1 DLC Consulting, the President Eng. Arch. Alberto Dal Lago Client: **BIBM** Authors: Prof. Eng. Bruno Dal Lago Eng. Arch. Alberto Dal Lago Eng. Uberto Marchetti

INDEX

1		mise	
2	Cas	e study building and numerical modelling	
	2.1	Linear elastic analysis	
	2.2	Buckling analysis	.26
3	Mat	terial constitutive laws	
	3.1	Concrete constitutive law following EN1992-1-1:2004	.29
	3.2	Concrete constitutive law following FprEN1992-1-1:2022	
	3.3	Steel constitutive law following EN1992-1-1:2004	
	3.4	Steel constitutive law following FprEN1992-1-1:2022	.42
	3.5	Concrete time-dependent behaviour following EN1992-1-1:2004	.46
	3.6	Concrete time-dependent behaviour following FprEN1992-1-1:2022	.47
4	Mir	imum concrete cover	
	4.1	Exposure class XC1	
	4.2	Exposure class XC2	
5	TT	element – EN1992-1:2004	.50
	5.1	Shop drawings	.50
	5.2	Definition of concrete and reinforcement geometry	. 52
	5.3	Material constitutive laws employed in the calculation	.55
	5.4	Sectional properties	
	5.5	Loads	.58
	5.6	Prestressing transfer and time-dependent behaviour	.58
	5.7	Non-linear moment-curvature diagram	.61
	5.8	Bending moment distribution	.63
	5.9	SLS checks	
	5.10	ULS checks	
	5.11	Fire checks	.72
6	TT	element – FprEN1992-1:2022	.76
	6.1	Shop drawings	.76

	6.2	Definition of concrete and reinforcement geometry	
	6.3	Material constitutive laws employed in the calculation	81
	6.4	Sectional properties	82
	6.5	Loads	84
	6.6	Prestressing transfer and time-dependent behaviour	84
	6.7	Non-linear moment-curvature diagram	87
	6.8	Bending moment distribution	
	6.9	SLS checks	
	6.10	ULS checks	94
	6.11	Fire checks	
7	Holl	lowcore element –EN1992-1:2004	103
	7.1	Shop drawings	103
	7.2	Definition of concrete and reinforcement geometry	105
	7.3	Material constitutive laws employed in the calculation	
	7.4	Sectional properties	
	7.5	Loads	110
	7.6	Prestressing transfer and time-dependent behaviour	
	7.7	Non-linear moment-curvature diagram	113
	7.8	Bending moment distribution	
	7.9	SLS checks	116
	7.10	ULS checks	120
	7.11	Fire checks	124
8	Holl	lowcore element – FprEN1992-1:2022	127
	8.1	Shop drawings	127
	8.2	Definition of concrete and reinforcement geometry	129
	8.3	Material constitutive laws employed in the calculation	131
	8.4	Sectional properties	132
	8.5	Loads	133
	8.6	Prestressing transfer and time-dependent behaviour	134

	8.7	Non-linear moment-curvature diagram	137
	8.8	Bending moment distribution	138
	8.9	SLS checks	139
	8.10	ULS checks	142
	8.11	Fire checks	148
9	Latt	ice girder element –EN1992-1:2004	151
	9.1	Shop drawings	151
	9.2	Definition of concrete and reinforcement geometry	
	9.3	Material constitutive laws employed in the calculation	
	9.4	Sectional properties	156
	9.5	Loads	158
	9.6	Time-dependent behaviour	159
	9.7	Non-linear moment-curvature diagram	
	9.8	Bending moment distribution	
	9.9	SLS checks	
	9.10	ULS checks	166
	9.11	Fire checks	
1(0 L	attice girder element – FprEN1992-1:2022	173
	10.1	Shop drawings	173
	10.2	Definition of concrete and reinforcement geometry	175
	10.3	Material constitutive laws employed in the calculation	177
	10.4	Sectional properties	178
	10.5	Loads	180
	10.6	Time-dependent behaviour	181
	10.7	Non-linear moment-curvature diagram	182
	10.8	Bending moment distribution	183
	10.9	SLS checks	184
	10.10	ULS checks	186
	10.11	Fire checks	191

11 P	restressed beam element –EN1992-1:2004	194
11.1	Shop drawings	194
11.2	Definition of concrete and reinforcement geometry	
11.3	Material constitutive laws employed in the calculation	199
11.4	Sectional properties	200
11.5	Loads	
11.6	Prestressing transfer and time-dependent behaviour	
11.7	Non-linear moment-curvature diagram	
11.8	Bending moment distribution	
11.9	SLS checks	
11.10	ULS checks	
11.11	Fire checks	215
12 P	Prestressed beam element – FprEN1992-1:2022	
12.1	Shop drawings	218
12.2	Definition of concrete and reinforcement geometry	
12.3	Material constitutive laws employed in the calculation	
12.4	Sectional properties	224
12.5	Loads	226
12.6	Prestressing transfer and time-dependent behaviour	
12.7	Non-linear moment-curvature diagram	230
12.8	Bending moment distribution	
12.9	SLS checks	
12.10	ULS checks	236
12.11	Fire checks	241
13 R	Leinforced beam element –EN1992-1:2004	244
13.1	Shop drawings	244
13.2	Definition of concrete and reinforcement geometry	246
13.3	Material constitutive laws employed in the calculation	248
13.4	Sectional properties	249

13.5	Loads	
13.6	Time-dependent behaviour	252
13.7	Non-linear moment-curvature diagram	253
13.8	Bending moment distribution	255
13.9	SLS checks	256
13.10		
13.11	Fire checks	
14 R	Reinforced beam element – FprEN1992-1:2022	
14.1	Shop drawings	
14.2	Definition of concrete and reinforcement geometry	
14.3	Material constitutive laws employed in the calculation	271
14.4	Sectional properties	272
14.5	Loads	
14.6	Time-dependent behaviour	
14.7	Non-linear moment-curvature diagram	
14.8	Bending moment distribution	
14.9	SLS checks	
14.10	ULS checks	
14.11	Fire checks	
15 C	Column element –EN1992-1:2004	
15.1	Shop drawings	
15.2	Definition of concrete and reinforcement geometry	
15.3	Material constitutive laws employed in the calculation	
15.4	Sectional properties	
15.5	Time-dependent behaviour	
15.6	Non-linear moment-curvature diagram	
15.7	Bending moment distribution (induced by eccentricity)	
15.8	SLS checks	
15.9	ULS checks	

15.10	Fire checks	309
16 C	Column element – FprEN1992-1:2022	313
16.1	Shop drawings	
16.2	Definition of concrete and reinforcement geometry	319
16.3	Material constitutive laws employed in the calculation	321
16.4	Sectional properties	322
16.5	Time-dependent behaviour	324
16.6	Non-linear moment-curvature diagram	
16.7	Bending moment distribution induced by eccentricity	327
16.8	SLS checks	
16.9	ULS checks	
16.10	Fire checks	331
17 Fe	oundation footing element –EN1992-1:2004	
17.1	Shop drawings	334
17.2	Definition of concrete geometry and material properties	
17.3	Soil bearing stress check	
17.4	Flexural reinforcement design	
17.5	Punching shear	
18 F	oundation footing element – FprEN1992-1:2022	
18.1	Shop drawings	338
18.2	Definition of concrete geometry and material properties	340
18.3	Soil bearing stress check	
18.4	Flexural reinforcement design	341
18.5	Punching shear	342
19 E	valuation of environmental impact	
19.1	Methodology	346
19.2	TT element – EN1992-1:2004	348
19.3	TT element – FprEN1992-1:2022	349
19.4	Hollowcore element –EN1992-1:2004	350

	19.5	Hollowcore element – FprEN1992-1:2022	.351
	19.6	Lattice girder element –EN1992-1:2004	.352
	19.7	Lattice girder element – FprEN1992-1:2022	
	19.8	Prestressed beam element -EN1992-1:2004	.354
	19.9	Prestressed beam element – FprEN1992-1:2022	.355
	19.10	Reinforced beam element –EN1992-1:2004	.356
	19.11	Reinforced beam element – FprEN1992-1:2022	
	19.12	Column element –EN1992-1:2004	
	19.13	Column element – FprEN1992-1:2022	.359
	19.14	Foundation footing – EN1992-1:2004	
	19.15	Foundation footing – FprEN1992-1:2022	.361
20	0 C	omments on main deviations from EN1992:2004 to FprEN1992:2022	.362
	20.1	Constitutive law of materials	
	20.2	Flexural and compressive strength	.364
	20.3	Serviceability	.364
	20.4	Shear, punching shear and strut&tie	
	20.5	Fire	
	20.6	Additional requirements	.368
2	1 C	onclusions	.370
	21.1	Comparison in terms of volume of material employed	.370
	21.2	General comments about the design of the elements	.371
	21.3	Comparison in terms of fire resistance	.373
	21.4	Comments about easiness to read and apply FprEN1992-1:2022	.374
	21.5	Final remarks and future work	.375

1 Premise

The present report contains the description of the results obtained within the EC2 project sponsored by BIBM (Federation of the European Precast Concrete Industry) following the call "Evolution of design provisions for precast concrete - Call for external technical expertise". DLC Consulting s.r.l. was selected for this activity.

Eurocode 2 – "EN 1992-1-1 (2004) Design of concrete structures - Part 1-1: General rules and rules for buildings" is the current version of the technical rules for the design of reinforced and prestressed concrete structures; EN 1992-1-2 includes the fire design for the same concrete structures. These standards are presently under revision (CEN Formal Vote stage) and, if approved, will replace the 2004 versions in the years to come (at latest in 2028) and become the new version.

The work was developed following, in addition to the current Eurocode standards under validity, the current drafts of the new documents, namely:

- FprEN1992-1-1:2022
- FprEN1992-1-2:2022

The drafts of the new versions, supplied by BIBM, include major changes compared to the current, and the interpretation of the impact of these modifications over the design of precast elements is difficult due to their large quantity, to be analysed as a whole rather than as single contributions. Within this project, selected structural elements representative of the European precast concrete industry for commercial/residential buildings were designed in detail following both current and draft new versions of the European 2 documents, considering an integrated structural design.

It is to be reminded that the activity concerns structural design, which is not an exact science. Many variables contribute to the achievement of the required performances, and what presented in this report is the result of reasonable and recurrent choices made by a team of experts in the field of design and research of precast concrete structures. Nevertheless, different arrangements could have fulfilled the same performance requests, so it is assumed that a certain subjectivity of the results is to be expected.

This report contains a detailed description of the structural calculations and results of the structural design of the selected members. Excerpts from the original calculation spreadsheets are given for the best clarity in the design procedure adopted. All deviations encountered during the design process are listed in the document.

Moreover, shop drawings made with 3D software are provided in order to transfer more efficiently to the reader the structural arrangement of the members, including detailed views of their assembled reinforcing cages.

The environmental impact in terms of the recent trends of decarbonisation, material efficiency and circular economy is evaluated on the basis of the detailed quantities of materials employed in the

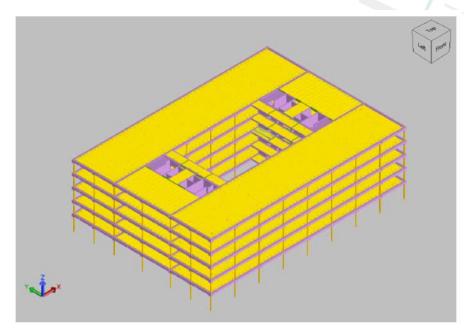
analysed elements and of Environmental Product Declarations (EPDs) deemed to be representative of the European production.

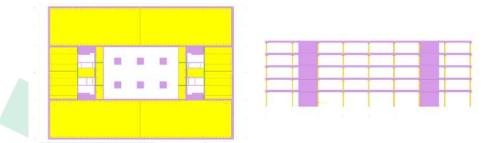
Brief notes concerning how to read the plotted instructions of the software Mathcad15:

- := definition of a function or a value
- = calculation or recall of a value
- = is a Boolean condition (imposition of equality) necessary to set solver instructions

Extension strain and tension stress/load have positive sign " + "; shrinkage strain and compression stress/load have negative sign " - ".

Operations are always done top to bottom (no external routines are employed) -> all members of an equation need to be defined prior to the writing of the equation itself.



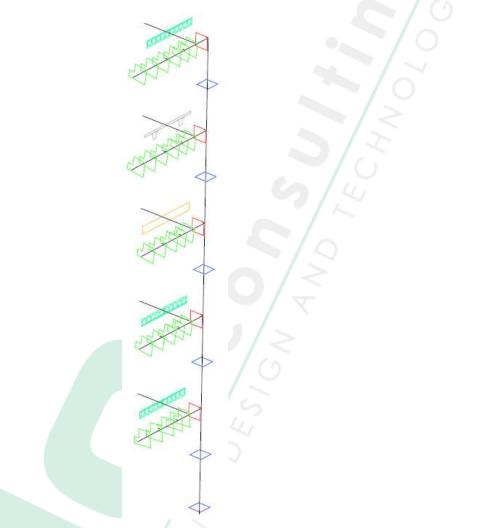


2 Case study building and numerical modelling

The case study building was assigned by the team of experts of BIBM. It consists of a 5-storey building above the ground only, with rectangular plan having a central rectangular court and two distribution cores (stairs, lifts, and MEP system main distribution) along the shorter court sides. The total covered area is about 15000 m^2 .

Pictures of the provided drawings are collected in the following:

From the structural point of view, the building can be classified as a frame system braced by wall cores. The floors are assumed to be made with different technologies:

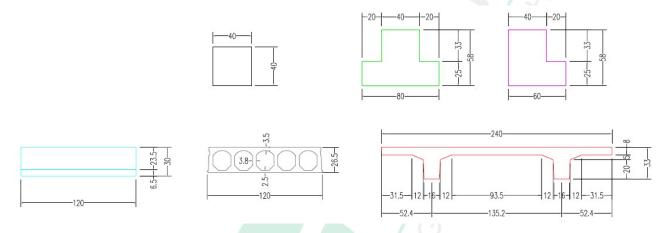

- 1st floor: adjacent precast hollowcore members
- 2nd floor: adjacent precast hollowcore members
- 3rd floor: precast lattice girders completed with additional reinforcement and cast-in-situ concrete pouring
- 4th floor: adjacent precast TT members

- 5th floor: adjacent hollowcore members

A sketch of the structural model showing the different typologies of floor is presented in the next figure:

The floor elements are supported by L-shaped and inverted-T beams in the edge and centre of the slab, respectively. Following the assumed structural scheme, it is logical to assume that beams are protruding from the soffit, and floor members are supported over the beam corbels.

A numerical model was developed with the finite element software Straus7 (Strand7), release 2.4.6., with the aim to find out the actions on the different elements. Indeed, being all horizontal members simply supported (floor elements over beam corbels, and beam elements over column corbels), the model is not necessary for the determination of the action in the horizontal members, but rather on the vertical columns, which form part of the lateral load resisting system of the building. It is specified that the diaphragmatic action actually insists on the horizontal elements, since a reinforced concrete topping is not present at any storey, and therefore the horizontal loads are conveyed to the bracing cores through the horizontal members and their connections. These connections were included in the structural model as simplified elastic springs, with assigned stiffness from



experimental tests of typical dowel or angle connections. The results showed that the out-of-plane bending and shear acting on the horizontal members, as well as the actions on the connections, are so low that they can be considered negligible (horizontal load from wind only is taken into account, neglecting seismic action).

Nevertheless, the numerical model was used not only to derive the combination of actions on the members, but also to compute the proper restraint coefficient for the effective shear span used for the checks on the column elements including 2^{nd} order effects.

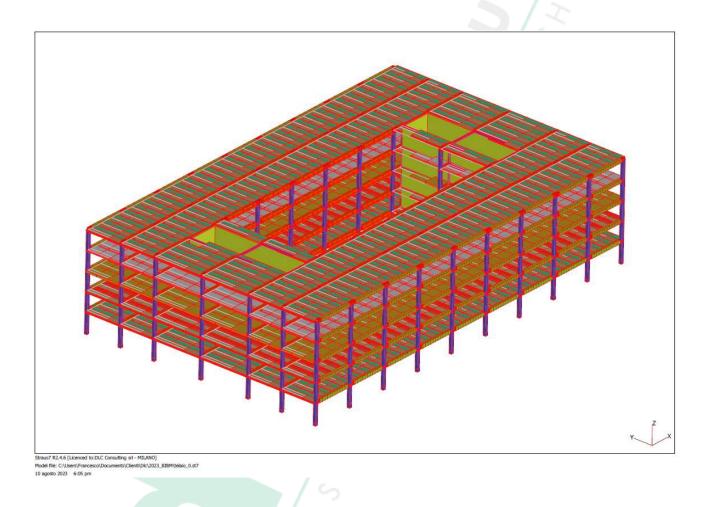
A <u>preliminary</u> proportioning, carried out with the aim to identify the structural own dead weight to be inserted in the numerical model, gave as a result the cross-sections shown in the following:

To be noted that the above cross-sections were confirmed after detailed analysis, apart from inner lightening pipes that were discretely installed in the column elements to save concrete volume, and from the depth and width of the partially precast lattice slab element, which were unified with respect to the depth of the TT element to 330 mm and 2400 mm, respectively.

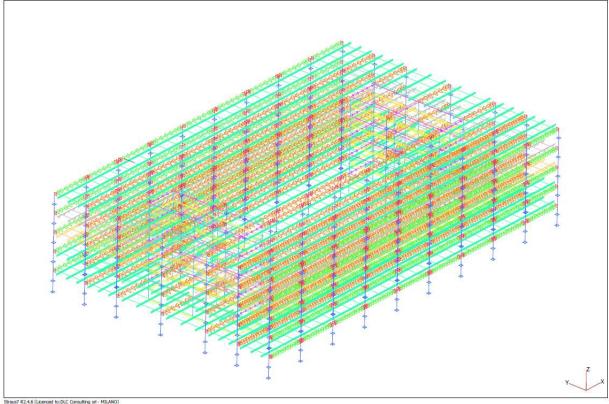
The structural materials considered are the following:

- Concrete C45/55 for all precast concrete cast (except columns)
- Concrete C80/95 for precast columns
- Concrete C25/30 for all cast-in-situ concrete*
- Steel B500C for reinforcing bars with diameter equal or larger than Φ 16 mm
- Steel B400A for reinforcing bars with diameter smaller than Φ 16 mm
- Steel Y1860 for prestressing tendons**

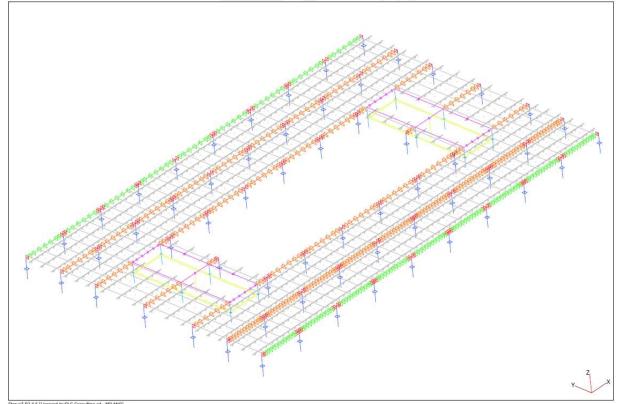
* completion cast-in-situ concrete is cast below the precast foundation footing, over the lattice girder plank, and inside selected core ends in the hollowcore elements.


** only 7w 0.5' tendons are employed, having a cross-sectional area of 93 mm².

Images of the numerical model are shown in the following. All structural members are modelled with elastic beam elements, including the cores, which are simplistically modelled as squat beam elements, also since they are not object of detailed calculation. All columns are assumed to be



perfectly clamped to the ground. Stiff horizontal cantilever beam elements simulate the physical presence of the beam-supporting corbels. All horizontal members are perfectly hinged along the vertical displacement direction. In particular, a rotation restraint release was applied to all beams and floor elements. The presence of a well-distanced couple of support floor-to-beam connections is included in the model in terms of a saddle made at each end of the floor element and connected to the beam element nodes through rigid links. Zero-length elastic spring elements ("connection" elements in the software) were applied inside the saddle structure to model the presence of the connections, with stiffness values considered following experimental tests on the most typical connection typologies, including dowel and external angles.

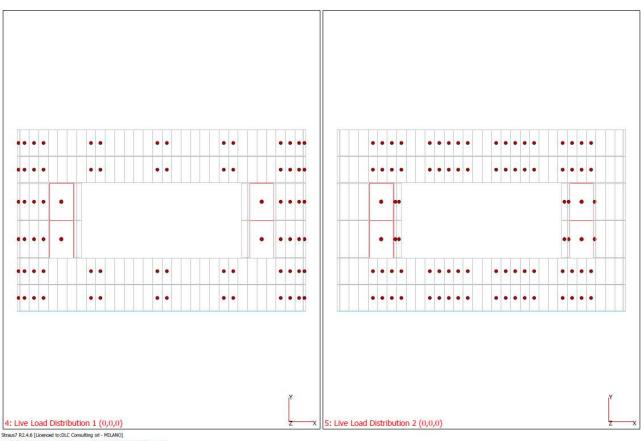


Straus7 R2-4.6 [Licenced to:DLC Consulting srl - MILANO] Model file: C:\Users\Francesco\Documents\Clientl\Dic\2023_BIBM(telaio_0.st7 10 agosto 2023 6:08 pm

Straus? R2,4.6 [Licenced to:DLC Consulting srl - MILANO] Model file: C:(Users\Francesco)Documents/ClientlijDir(2023_BIBM(belaio_0.st7 10 agosto 2023 6:12 pm



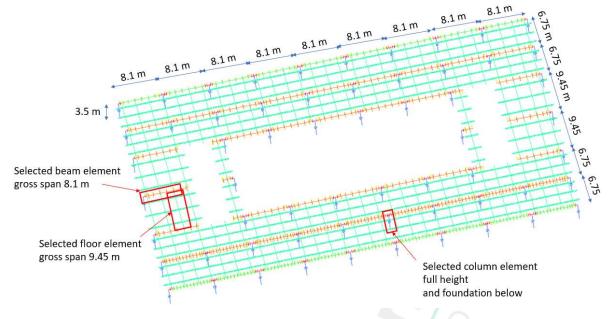
The loads are introduced with different strategies:


- The structural dead selfweight of the modelled elements is introduced by explicitly attributing the density of reinforced concrete (2500 kg/m³) to the beam elements;
- The non-structural dead loads are introduced with plate load patch elements to which a mass of 200 kg/m² is introduced to account for both technical layers and distributed lightweight partition walls;
- The mass of cladding walls is taken into account in the model in the form of distributed mass applied to the edge beam elements (350 kg/m);
- Live loads are assigned to the plate load patch elements (300 kg/m²) in alternative positions, in order to model possible unbalanced live load distributions;
- Horizontal wind is applied as vertical plate load patch elements to which a distributed load of 50 kg/m² is applied;
- Fire load is taken into account considering an exposure of 60 minutes to nominal standard ISO 834 fire curve.

The considered environmental class is XC1, except for foundations, where it is XC2.

Straus7 R2.4.6 [Licenced to:DLC Consulting srl - MILANO] Model file: C:\UsersFrancesco\Documents\Client\Dic(2023_BIBM\telaio_0.st7 10 agosto 2023 4:10 pm

Among the modelled elements, according to the aim of the projects, only selected main elements were designed in detail. These elements were selected according to the most stressed (floor member with longer span, beam with larger influence area, central column and its foundation).


They are the following seven:

- Precast TT floor element
- Precast hollowcore floor element with end partial concrete filling
- Partially precast lattice girder floor element
- Precast prestressed central inverted-T beam
- Precast non-prestressed central inverted T-beam
- Precast central column
- Partially precast foundation footing

The selected elements are indicated in the following figure:

The following table contains the bill of materials modelled.

The total modelled mass is about 8500 tons.

Model: telaio 0								
Houen telalo_o								
Bill of materials								
Selected groups:								
Model								
Model\fondazione								
Model\1 solaio								
Model\1 vano scala								
Model\2 solaio								
Model\2 vano scala								
Model\3 solaio								
Model\3 vano scala								
Model\4 solaio								
Model\4 vano scala								
Model\5 solaio								
Model\5 vano scala								
Included mass:								
Structural Mass								
	Mass	Volume	Length	Area	Count	Material	Туре	Section
	kg	m ³	m	m ²				
Grand total:	8482556,521	3441,023	9459,500	15075,000				
Beam properties:								
1: Column	675000,000	270,000	1080,000		360		Beam	Solid Rectangle
2: Bracket	227500,000	91,000	364,000		845		Beam	Solid Rectangle
3: L-Shaped Beam	512550,000	205,020	603,000		835		Beam	Angle
4: Stair Core	1098000,000	439,200	36,000		12		Beam	Hollow Rectangle
5: Fictitious Column	0,000	13,125	210,000		60		Beam	Solid Rectangle
6: Fictitious Beam	0,000	34,875	558,000		160		Beam	Solid Rectangle
7: Inverted-T Beam	1171950,000	468,780	1202,000		1425		Beam	T-Section
8: TT Slab Element	720879,013	288,352	997,200		432		Beam	User Section
9: Slab-to-Beam Connection	0,000	0,000	288,500		2885		Connection	
10: Slab-to-Slab Connection	0,000	0,000	132,000		1320		Connection	
11: Hollow Core Slab Element	2281717,508	912,687	2991,600		1296		Beam	User Section
12: Solid Slab	1794960,000	717,984	997,200		432		Beam	Solid Rectangle
Total	8482556,521	3441,023	9459,500		10062			
Plate properties:								
1: solaio	0,000	0,000		11389,500	770		Load Patch	
2: vano scala	0,000	0,000		1134,000	20		Load Patch	

ulting srl - MILANO] •••nts\Clienti\Dic\2023_BIBM\telaio_0.st7 2.4.6 [Licen

3: facciata Total				0,000 0,000	0,000 0,000		2551,500 15075,000	90 880	Load Patch		
Centre	of mass										~
		Mass	CM(X)	CM(Y)	CM(Z)					
		kg	m	m 22.050	п 0.01						
fondazione Model	6	49250,000 0,000	36,450	22,950	-0,25	0					
1 vano sca		213500,000	36,450	22,950	1,75						
1 solaio		1274222,503	36,532	22,950	3,32						
2 vano sca 2 solaio		213500,000 1274222,503	36,450 36,532	22,950 22,950	5,25						
3 vano sca		213500,000	36,450		8,75						
3 solaio 4 vano sca		2308610,000 213500,000	36,556 36,450	22,950 22,950	10,40 12,25						
4 solaio		1234529,013	36,530		12,2						
5 vano sca		213500,000	36,450		15,75						
5 solaio Total:		1274222,503 8482556,521	36,532 36,527	22,950 22,950	17,32						
Local in	iertia										
		1 kg.r	xx	kg.	Iyy m ²	Izz kg.m ²	Ixy kg.m ²	Iyz kg.m ²	Izx kg.m ²		
fondazione	•	5379679,	167	29832071	,667	35209698,750	0,000	0,000	0,000		
Model 1 vano sca	1-	0, 217947,	000	0 137417851	,000	0,000 137199903,750		0,000	0,000 0,000		
1 solaio	110	321419141,		663742114		984172186,669	0,000	0,000	18721,122		
2 vano sca	ala	217947,		137417851		137199903,750		0,000	0,000		
2 solaio 3 vano sca	ila	321419141, 217947,		663742114 137417851		984172186,669 137199903,750		0,000	18721,122 0,000		
3 solaio		560801460,	266	1231153689	,448	1790928978,707	0,000	0,000	24386,009		
4 vano sca	ala	217947,		137417851		137199903,750		0,000	0,000		
4 solaio 5 vano sca	ala	312232487, 217947,		641967637 137417851		953213718,396 137199903,750		0,000	18314,607 0,000		
5 solaio		321419141,	907	663742114	,212	984172186,669	0,000	0,000	18721,122		
Total:		2033070242,)1/	4770587121	,626	6417877146,685	0,000	0,000	265620,332		
	ers\Francesco\Doci	nsulting srl - MILAN ments\Clienti\Dic\2		0.st7						 	
Model file: C:\Use	ers\Francesco\Doci			0.47					11 / ~		
Model file: C:\Use 10 agosto 2023	ers\Francesco\Doci			0,0	000		2551,500 15075,000	90 880	Load Patch	 	
Model file: C:\Use 10 agosto 2023 ata	ers\Francesco\Doci		0,000	0,0					Load Patch		
Model file: C:\Use 10 agosto 2023 ata	ers\Francesco\Doc 6:01 pm	ments/Clientl/Dic/2	0,000 0,000 0,000	0,0 0,0	000 CM(Z)				Load Patch		
Model file: C:\Use 10 agosto 2023 ata e of mass	est,Francescol,Doci 6:01 pm Ma 49250,r	ss CM 100 36,	23_BIBM(telaio 0,000 0,000 0,000 X) C	0,0 0,0	000				Load Patch		
Model file: C:\Use 10 agosto 2023 ata e of mass	ers\Francesco\Doc 6:01 pm Ma 49250,1 0,1	ss CM 60 36, 100 36,	0,000 0,000 0,000 X) C m 450 2	0,0 0,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CM(Z) m -0,250				Load Patch		
Model file: Critise 10 agosto 2023 ata e of mass scala	ers(Francesco)(Doc 6:01 pm 49250, 0, 213500,	ss CM (g 00 36, 00 36)	0,000 0,000 0,000 X) C m 450 2	0,0 0,0 IM(Y) m 22,950 22,950	CM(Z) m -0,250 1,750				Load Patch		
Model file: C:\Use 10 agosto 2023 atta e of mass one scala	ers\Francesco\Doc 6:01 pm Ma 49250,1 0,1	ments/Client/IpIC/2 ss CMI kg 00 36, 00 36	0,000 0,000 0,000 X) C m 450 2 450 2 532 2	0,0 0,0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CM(Z) m -0,250				Load Patch		
Model file: C:\use 10 agosto 2023 ata e of mass one scala	est/Fancesco/0000 6:01 pm 49250,/ 0,/ 213500,/ 1274222,? 213500,/ 1274222,?	ss CP4 (g 00 36, 00 36, 00 36, 00 36, 00 36, 03 36, 0,	0,000 0,000 X) C m 450 2 532 2 532 2	0,0 0,0 m 22,950 22,950 22,950 22,950 22,950	CM(Z) m -0,250 1,750 3,320 5,250 6,820				Load Patch		
mode file: C(like 10 aporto 2023 ata e of mass one scala scala	**/Fancescolloco 6:01 pm 49250,/ 0,/ 1274222,/ 213500,/ 1274222, 213500,/	ments/ClientI)DIC2 ss CMI kg 00 36, 00 36, 100 36, 100 36, 100 36, 103 36,	0,000 0,000 X) C m 450 450 450 2 332 2 450 2 352 2 450 2 352 2 450 2	0,0 0,0 m 22,950 22,950 22,950 22,950 22,950 22,950 22,950	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750				Load Patch		
e of mass scala scala scala	est/PancescolDoo 6:01 pm 49250,/ 0, 213500,/ 1274222,/ 213500,/ 1274222,/ 213500,/ 2235610,/	ss CMI sg 000 36, 000 36, 00 36, 0	0,000 0,000 0,000 X) C m 450 532 2 556 2 556 2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401				Load Patch		
Model file: C:\Use	**/Fancescolloco 6:01 pm 49250,/ 0,/ 1274222,/ 213500,/ 1274222, 213500,/	ss CMI sg CMI sg 000 36, 000 36, 00	0,000 0,000 x) C m 450 2 450 2	0,0 0,0 m 22,950 22,950 22,950 22,950 22,950 22,950 22,950	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750				Load Patch		
e of mass scala scala scala scala	est/#ancescol0co 6:01 pm 49250, 0, 1274222, 213500, 1274222, 213500, 213500, 2306610, 213500,	ss CIMI so CIMI	0,000 0,000 x) C m 150 2 450 2 450 2 532 2 450 2 556 2 450 2 556 2 450 2 556 2 556 2 556 2 556 2 556 2 550 2 530 2 530 2 530 2 530 2 530 2 530 2 530 2 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 5 550 50	0,0 0,0 0,0 22,950 22,950 22,950 22,950 22,950 22,950 22,950	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401 12,250				Load Patch		
e of mass scala scala scala scala scala	ms/FancescolDoo 6:01 pm 49250, 0, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1234529, 213500, 1274222, 213500,	ss CMI ss CMI sg 00 36, 00 36, 00 36, 00 36, 13 36, 13 36, 13 36, 13 36, 13 36, 13 36, 13 36, 13 36, 10	0,000 0,000 0,000 x) ⊂ m 450 450 450 2332 450 2332 450 2332 450 2332 450 2332 2450 2556 2556 2556 2552 2550 2552 2552 25	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,820 6,825 10,401 12,250 13,814 15,750 17,320				Load Patch		
e of mass scala scala scala scala scala	ext/FancescolDoo 6:01 pm 49250, 0,0, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274522, 213500, 1234529, 213500, 213500,	ss CP4 ss CP4 sg 00 36, 00 36, 00 36, 00 36, 10 36, 11 36, 11 36, 11 36, 11 36, 10	0,000 0,000 0,000 x) ⊂ m 450 450 450 2332 450 2332 450 2332 450 2332 450 2332 2450 2556 2556 2556 2552 2550 2552 2552 25	0,6 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401 12,250 13,814 15,750				Load Patch		
e of mass e of mass scala scala scala scala	ms/FancescolDoo 6:01 pm 49250, 0, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1234529, 213500, 1274222, 213500,	ss CMI ss CMI sg 00 36, 00 36, 00 36, 00 36, 13 36, 13 36, 13 36, 13 36, 13 36, 13 36, 13 36, 13 36, 10	0,000 0,000 0,000 x) ⊂ m 450 450 450 2332 450 2332 450 2332 450 2332 450 2332 2450 2556 2556 2556 2552 2550 2552 2552 25	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,8250 6,8250 10,401 12,250 13,814 15,750 17,320				Load Patch		
e of mass e of mass scala scala scala scala	Ma 49250, 0,1 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 8482556,	ss CMI sg CMI sg 000 36, 000 36, 000 36, 000 36, 000 36, 103 36, 103 36, 103 36, 103 36, 113 36, 113 36, 121 36, 12	0,000 0,000 0,000 x) ⊂ m 450 450 450 2332 450 2332 450 2332 450 2332 450 2332 2450 2556 2556 2556 2552 2550 2552 2552 25	0,(0,0 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950	CM(Z) m -0,250 1,750 3,320 5,250 6,8250 6,8250 10,401 12,250 13,814 15,750 17,320	Izz	15075,000	880	Izx		
e of mass e of mass scala scala scala scala scala scala	Ma 6:01 pm 6:01 pm 49250,1 0,0,1 1274222,1 213500,1 1274222,2 213500,1 2135000,1 2135000,1 215000,1 215000,1 21	ss CMI kg 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 10	0,000 0,000 0,000 X) C m 150 2 532 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 557 2 2	0,(0,(0,(22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950 22,950	CM(Z) m -0,250 1,750 3,320 5,250 6,8250 6,8250 10,401 12,250 13,814 15,750 17,320	Izz kg.m ²	15075,000	880 Iyz kg.m ²	Izx kg.m ²		
e of mass e of mass scala scala scala scala scala scala	Ma 6:01 pm 6:01 pm 49250,1 0,0,1 1274222,1 213500,1 1274222,2 213500,1 2135000,1 2135000,1 215000,1 215000,1 21	ss CMI sg 00 36, 00	0,000 0,000 0,000 X) C m 150 2 532 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 557 2 2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,8250 6,8250 10,401 12,250 13,814 15,750 17,320	Izz kg.m ² 35209698,750	15075,000 Ixy kg.m ² 0,000	880 Iyz kg.m ² 0,000	Izx kg.m ² 0,000		
e of mass e of mass scala scala scala scala scala scala scala	extPancescolDoc 6:01 pm 49250, 0, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274225, 8482556, 8482556,	ss CMI sg CMI sg 000 36, 000 36, 00	231 BIBM(Heado, 0,000 0,000 X) C m 450 2450 2450 2450 2556 2556 2556 2556 2556 2556 2556 25	0,0 0,0 m 22,950 20,9000 20,9000 20,9000 20,9000 20,9000 20,9000 20,9000	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 3520968,750 0,000	Ixy kg.m ² 0,000	880 Iyz kg.m ² 0,000	Izx kg.m ² 0,000 0,000		
model mic clubs 10 separto 2023 ata e of mass scala scala scala scala scala scala scala scala	***/FancescolDoo 6:01 pm 49250,(0,0,213500,) 1274222, 213500,(1274222, 213500,(1274222, 213500,(1274222, 213500,(1234529,(213500,(1234529,(213500,(1234529,(213500,(ss CMI ss CMI sg 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 10	0,000 0,000 0,000 x) C m 150 2 532 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 557 2 8 50 2 527 2 8 8 1 3 2 2 527 2 8 8 1 3 2 2 527 2 550 5 550 5 550 5 550 5 550 5 550 5 550 50	0,(0,(22,950 2	CM(Z) m -0,250 1,750 3,320 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 35209688,750 0,000 137199903,750	15075,000 Ixy kg.m ² 0,000 0,000 0,000	880 Iyz kg.m ² 0,000 0,000	Izx kg.m ² 0,000 0,000		
e of mass e of mass scala scala scala scala scala scala scala	***/FancescolDoo 6:01 pm 49250,/ 213500,/ 1274222,/ 213500,/ 1274222,/ 213500,/ 1274222,/ 213500,/ 1274222,/ 213500,/ 1274222,/ 8482556,/ 5379 217 321419	ss CMI ss CMI sg 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 10	21 BIBMURANO 0,000 0,000 X) C m 450 2 450 2 532 2 556 2 450 2 556 2 556 2 556 2 556 2 2 556 2 2 556 2 2 556 2 2 2 556 2 2 2 556 2 2 2 556 2 2 2 556 2 2 2 556 2 2 2 556 2 2 556 2 2 2 556 2 2 556 2 2 2 556 2 2 556 2 2 556 2 2 2 556 2 2 2 556 2 2 556 2 2 2 2 556 2 2 2 2 2 2 2 2 2 2 2 2 2	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 3520968,750 0,000	Ixy kg.m ² 0,000	880 Iyz kg.m ² 0,000	Izx kg.m ² 0,000 0,000		
model mic - Clube 10 separto 2023 ata e of mass scala scala scala scala inertia one scala	ext/ParcescolDoc 6:01 pm 49250, 0, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 127422, 213500, 213500, 127422, 213500, 213500, 213500, 213500, 213500, 213500, 213500, 213500, 2127422, 213500, 2127422, 213500, 2127422, 213500, 2127422, 212500, 2127422, 212500, 2127422, 212742, 212742, 2127422, 212742, 2	ss CMI sg 00 36, 00 36, 0, 00 36, 00 36,	0,000 0,000 0,000 x) C m 450 2 450 2 556 2 450 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 556 2 557 2 527 2 98 1374 1374	0,(0,(22,950 2	CM(Z) m -0,250 1,750 3,320 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 35209698,750 0,000 137199903,750 984172186,669 137199903,750	15075,000 Ixy kg.m ² 0,000 0,000 0,000 0,000 0,000	880 Iyz kg.m ² 0,000 0,000 0,000 0,000	Izx kg.m ² 0,000 0,000 18721,122 0,000 18721,122		
e of mass e of mass scala scala scala scala scala scala scala scala scala scala	***/FancescolDoo 6:01 pm 492500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 213500, 1274222, 5379 2177 321419 217 217 321419 321419 321419 321419 3217 321419 3217 321419 3217 321419 3217 321419 3217 32	ss CMI sg (00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 13 36, 00 36, 13 36, 13 36, 13 36, 13 36, 13 36, 141,907 141,	21. BIBM/URANO, 0,000 0,000 x) C m 450 232 2450 232 2556 232 2556 2352 2556 2352 2556 2352 256 2352 257 2960 1374 6637 1374	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,220 5,250 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 35209698,750 0,000 137199903,750 984172186,669 984172186,669 137199903,750	15075,000 kg.m 2 0,000 0,000 0,000 0,000 0,000 0,000 0,000	880 Iyz kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000	Izx kg.m ² 0,000 0,000 18721,122 0,000 18721,122 0,000		
e of mass e of mass scala scala scala scala scala scala scala scala scala scala scala	**/FancescolDoo 6:01 pm 49250, 0,0, 1274222, 213500, 1274222, 213500, 213500, 1274222, 213500, 1274222, 213500, 1274222, 8482556, 5379 217 321419 217 321419 217 321419 217 321419	ss CPM kg 000 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 10 36, 1	21. BIBMURRIO 0,000 0,000 X) C m 50 2450 2556 2556 2556 2556 2556 2556 2556 2556 2556 2556 2557 2966 1374 6637 1374 12311	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 3520969,750 984172186,669 984172186,669 137199903,750 984172186,669 137199903,750	Ixy kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000	580 Iyz kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Izx kg.m ² 0,000 0,000 16721,122 0,000 18721,122 0,000 24386,009		
e of mass e of mass scala scala scala scala scala scala scala scala scala	***/FancescolDoo 6:01 pm 49250, 0,0, 213500, 1274222, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 213500, 127422, 21500, 217422, 217500, 217422, 217500, 217422, 217500,	ss CMI sg 000 36, 000 36, 003 36, 004, 0	21. BIBMURRIO 0,000 0,000 X) C m 450 2 4 450 2 4 450 2 4 4 4 4 4 4 4 4 4 4 4 4 4	0,(0,(0,(22,950 24,950 24,9	CM(Z) m -0,250 1,750 3,320 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 35209698,750 0,000 137199903,750 984172186,669 137199903,750 790928978,707 790928978,707	15075,000 15075,000 kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	880 Iyz kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Izx kg.m ² 0,000 0,000 18721,122 0,000 18721,122 0,000 24386,009 0,000		
e of mass e of mass scala scala scala scala scala scala scala scala scala scala	***/FancescolDoo 6:01 pm ************************************	ss CMI sg (00 36, 00 36, 13 36, 00 36, 13 36, 141,907 147,917 141,907 147,917	21. BIBM/UHANO, 0,000 0,000 x) C m 450 532 556 532 556 532 556 532 556 532 556 532 257 298 1374 6637 1374 6637 1374 6637	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CM(Z) m -0,250 1,750 3,320 5,250 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 35206688,750 0,000 137199903,750 984172186,669 984172186,669 137199903,750 790228978,707 137199903,750 790228978,707	Ixy kg.m 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	880 Iyz kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Izx kg.m ² 0,000 0,000 18721,122 0,000 18721,122 0,000 24386,009 0,000 18314,607		
e of mass e of mass scala scala scala scala scala scala scala scala scala scala scala scala	***/FancescolDoo 6:01 pm ************************************	ss CMI kg 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 00 36, 10	21. BIBMURRIO 0,000 0,000 X) C m 150 255 255 255 255 257 296 1374 6637 1374 1374 1374 6419 1374	0,(0,(0,(22,950 24,950 24,9	CM(Z) m -0,250 1,750 3,320 6,820 8,750 10,401 12,250 13,814 15,750 17,320 10,066	Izz kg.m ² 35209698,750 0,000 137199903,750 984172186,669 137199903,750 790928978,707 790928978,707	15075,000 15075,000 kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	880 Iyz kg.m ² 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Izx kg.m ² 0,000 0,000 18721,122 0,000 18721,122 0,000 24386,009 0,000		

Straus? R2.4.6 [Licenced to:DLC Consulting srl - MILANO] Model file: C:\Users\FrancescolDocuments\Clientl\Dic\2023_BIBM(telaio_0.st7 10 agosto 2023 6:01 pm

2.1 Linear elastic analysis

Linear elastic and buckling analyses are carried out.

The linear elastic analysis outcome form is shown in the following.

The load combinations employed are also shown in the following, together with the resulting diagrams of the main actions on the members:

- Bending moment and shear distribution on floor elements along the vertical direction;
- Bending moment and shear distribution on beam elements along the vertical direction;
- Axial forces in the columns.

*Solution commenced on 10/08/2023 at 18:12:52

Straus7	[2.4.6][Solver	Build:	241412221	(32-Bit)

ANALYSIS TYPE	1	LINEAR STAT	IC				
COMPUTER NAME		DESKTOP-FLE	08774				
USER LOGON NAME		Francesco					
CPU			re(TM)2 Duo Ci	PU E8400 # 3.0	DOGH z		
USABLE PHYSICAL MEMOS	ar i	3.9 GB					
USABLE VIRTUAL MEMORY	6 4	3.0 GB					
MODEL FILE RESULT FILE SCRATCH PATH	12	"C:\Users\F	Tancesco\Docu	ments\Clienti	Dic 2023 BIB	Atelaio 0.s	127"
RESULT FILE		"C:\Users\F	Tancesco\Docu	ments\Clienti	Dic\2023 BIB	Atelaio 0.1	SA"
SCRATCH PATH		C:\Users\F	rancesco\Stra	187\Tmp\"			
TOTALS							
Nodes		11826					
Beans		10062					
Plates	34	880					
Bricks	1	0					
Links		5650					
SOLVER UNITS							
Length		10					
Mass		log					
Force		N					
Stress		: Pa					
FREEDOM CASE		"Freedom Ca	se 1*				
LOAD CASES		"Structural	Self-Weight"				
	12	"Facade Cla	dding"				
	1	"Non-Struct	ural Dead Load	2"			
	Î	"Live Load	Distribution	1.4			
		"Live Load	Distribution :	2*			
	2	"Wind Y+"					
STORAGE SCHEME	3	Skyline					
STORAGE SCHEME SORTING METHOD		Tree [1]					
SOLUTION TYPE	3	Direct					
NUMBER OF EQUATIONS	1	36957					
MAXIMUM BANDWIDTH		36957 2316					
AVERAGE BANDWIDTH	12	530					
(K) MATRIX SIZE MINIMUM RAM NEEDED	14	149.3 MB					
MINIMUM RAM NEEDED	14	12.7 MB					
FREE SCRATCH SPACE	4	51.7 GB					
NOTE[4]:Link force:	are add	ied to node r	eaction calcu	lations.			
SUMMATION OF APPLIED	Carlie e secore						
Case	FX	FY	FZ	MOX	MY	MZ	

Beans	123	0.000002+00		-8.76606E+07	1.90084E-10	FD-TROOTER F	-1.19883E-10	"Structural Self-Weight"
	23		-4 384058-11			2.333025TU4		
	з	the second se	1	-2.29635E+06	0.000008+00	9.04237E-11	~5.03455E-11	"Facade Cladding"
		-2,848488-25	-2.68589E-28	-2.50470E+07	1.78488E-10	7,90842E+02	-1,51461E-27	"Non-Structural Dead Load"
	4	2.983798-25	-4.02883E-28	-1.81967E+07	1.87356E-10	7.90842E+02	-4.230822-26	"Live Load Distribution 1"
	.5	5,095168-25	2.85845E-38	-2.05079E+07	1.72577E-10	7.90842E+02	-4.74579E-27	"Live Load Distribution 2"
	6	0.000002+00	8.44481E+05	-1.13332E-11	0,00000E+00	-1.67213E-11	8.79652E-12	"Wind Y+"
Plates	1	0,000002+00	0.00000E+00	0.00000E+00	0,00000E+00	0.00000E+00	0,00000E+00	"Structural Self-Weight"
	2	0,000002+00	0.000002+00	0.00000E+00	0,000002+00	0.00000E+00	0,000002+00	"Facade Cladding"
	3	0,000008+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	"Non-Structural Dead Load"
	4	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	"Live Load Distribution 1"
	5	0.000002+00	D.00000E+00	8.00000E+00	0,0000E+00	0.00000E+00	0.00000E+00	"Live Load Distribution 2"
	6	0,000002+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	"Wind Y+"
Total	1	7.10543E-10	1.70530E-11	-8.76606E+07	1.90084E-10	2.33589E+04	-1.19883E-10	"Structural Self-Weight"
	2	0.000002+00	-4.38405E-11	-2.29635E+06	0.000008+00	9.04237E-11	~5.03455E-11	"Facade Cladding"
	3	-2.848488-25	-2.68589E-28	-2.50470E+07	1.78488E-10	7,90842E+02	-1.51461E-27	"Non-Structural Dead Load"
	4	2.98379E-25	-4.02883E-28	-1.81967E+07	1.87356E-10	7.90842E+02	-4.23082E-26	"Live Load Distribution 1"
	5	5,095168-25	2.85845E-38	-2.05079E+07	1.72577E-10	7.90842E+02	-4,74579E-27	"Live Load Distribution 2"
	6	0,000002+00	8.44481E+05	-1.13332E-11	0,00000E+00	-1.67213E-11	8.79652E-12	"Wind Y+"
Vector	1	5,10703E-10	1.77351E-11	-8.74143E+07	-1.26947E+08	8.91601E+06	-7,82165E-11	"Structural Self-Weight"
	2	0,000002+00	-4.40963E-11	-2.29635E+0E	-1.776368-15	9.10063E-11	-5,01217E-11	"Facade Cladding"
	3	-2.84848E-25	-2.68589E-28	-2.50470E+07	-1.80984E+07	-9.53227E+06	-1.27637E-27	"Non-Structural Dead Load"
	4	2.98379E-25	-4.02883E-28	-1.81966E+07	-1.81350E+07	-4.07409E+05	-4.19508E-26	"Live Load Distribution 1"
	5	5.09516E-25	2_85845E-38	-2:05078E+07	-1.80617E+07	-7.34865E+06	-4.745798-27	"Live Load Distribution 2"
	6	0,000002+00	8.44481E+05	-1,12905E-11	-2.22045E-15	-1.68008E-11	8.70415E-12	"Wind Y+"
SUMMATION	OF MO	MENTS OF APPLI	ED LOADS ABO	T THE ORIGIN	[Load Vector]	í.		
1	Case	MXo	MYo	MZO	Name			
	1	-2.006168+09	3.19280E+09	-1.37621E-DB	"Structural	1 Self-Weight'	*	
	2	-5,270128+07	8.37020E+07	-1.92191E-09	"Façade Cla	adding"		
	3	-5,74829E+08	9.15934E+08	4.82346E-24		tural Dead Los	1.1"	
	4	-4,17613E+08	6.58324E+08	-7.09252E-24	"Live Load	Distribution	1"	
	5	-4,70655E+08	7.56912E+08	-1.34701E-23	"Live Load	Distribution	2*	
	6	-8,210238+06	1.78975E-10	3.07813E+07	"Wind Y+"			
Reducing :	36957	Equations (Usi	ing 149.4 MB 1	CAM)				
MAXIMIM P	TVOT	3	4.117582E+1	3 (Node 313 R	c)			
MINIMUM P				6 (Node 8546)				

Results for 6 Load Cases...

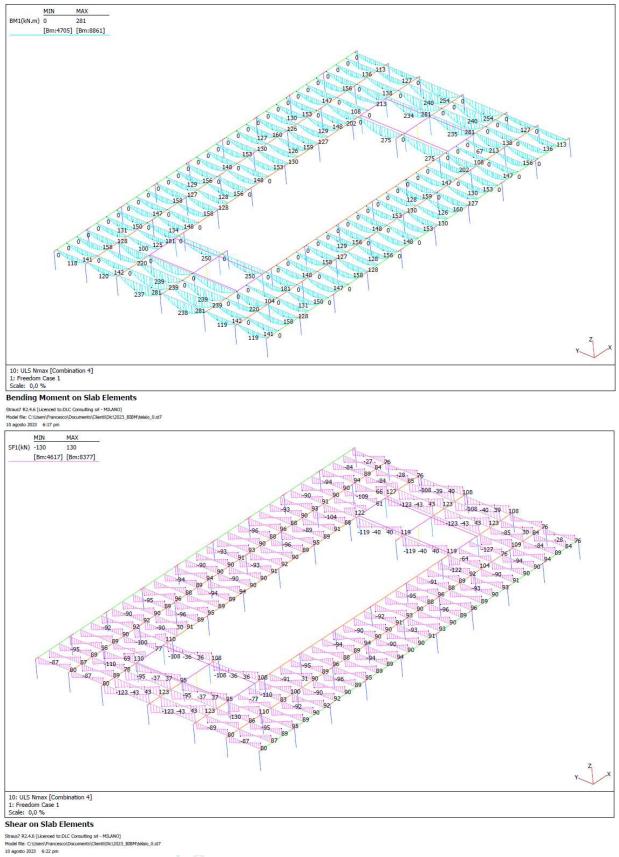
MAXIMUM DISPLACEMENT MAGNITUDES

Case	DX	DY	DZ	RX	RY	RZ	Nane
1	1.769898-04	2.807622-04	2.088082-02	3.41873E+03	1.08125E-02	3.231508-04	"Structural Self-Weight"
2	8,77353E-06	2.560372-05	4.28411E-04	6.40702E-05	1.41158E-04	3.65924E-05	"Facade Cladding"
3	1,10044E-04	1.946898-04	1.41531E-02	2.15870E-03	7.385098-03	1,12731E-04	"Non-Structural Dead Load"
4	1.72601E-04	1.56595E-04	1.152878-02	3.091508-03	5.63090E-03	1.06342E-04	"Live Load Distribution 1"
5	2.33561E-04	3.259562-04	2.347448-02	3.49501E-03	1.21738E-02	1.871572-04	"Live Load Distribution 2"
E	4.29286E-05	5.77322E-04	3.41040E-05	8.86413E-05	1.14259E-05	6.37154E-05	"Wind Y+"
		2010/2022/2022	0.0000000000000000000000000000000000000			1.0500.000000.000	
IRECT S	SUMMATION OF NO	DE REACTION F					
IRECT S	EUMMATION OF NO	DE REACTION F	ORCES FZ	MX	му	мz	Nane
		FY	FZ				
	FX	FY -4.75211E-11	FZ 8,766062+07	1,28543E+03	7.94127E+05	MZ	Nane
	FX -7.47605E-10	FY -4.75211E-11 2.56080E-11	FZ 8,766062+07	1,28541E+03 1,02535E+02	7.94127E+05 7.79160E+02	MZ -1.444698+03	Name "Structural Self-Weight"
	FX -7.47605E-10 1.72804E-11	FY -4.75211E-11 2.56080E-11 -5.45697E-12	FZ 8.76606E+07 2.29635E+06	1,28541E+03 1,02535E+02	7.94127E+05 7.79160E+02 1.00199E+05	MZ -1.444698+03 -2.118968+02	Name "Structural Self-Weight" "Facade Cladding"
	FX -7.47605E-10 1.72804E-11 -2.12367E-10	FY -4.75211E-11 2.56080E-11 -5.45697E-12 -7.33280E-12	FZ 8.76606E+07 2.29635E+06 2.50470E+07 1.81966E+07	1,28541E+03 1,02535E+02 4,10216E+02	7.94127E+05 7.79160E+02 1.00199E+05 3.63422E+05	MZ -1.444698+03 -2.118968+02 -1.164448+02	Name "Structural Self-Weight" "Facade Cladding" "Non-Structural Dead Load"

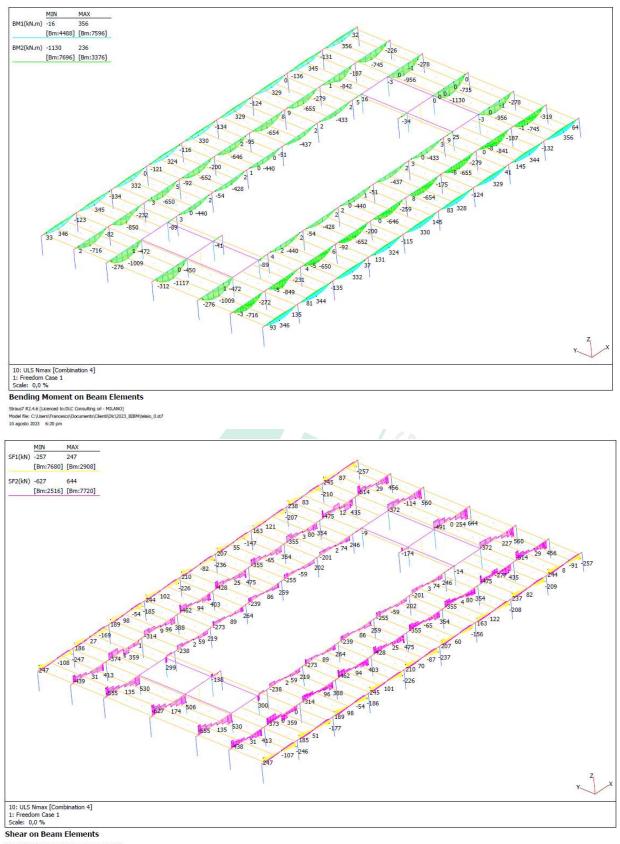
TOTAL CPU TIME : 20.859 Seconds (0:00:21)

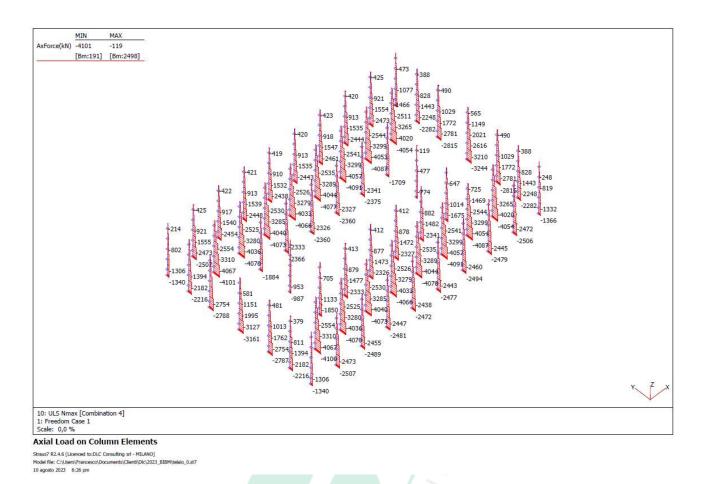
Solution completed on 10/08/2023 at 18:13:13 Solution time: 22 Seconds

SUMMARY OF MESSAGES 'Number of Notes : 1 'Number of Marnings : 0 'Number of Errors : 0



CASES	1 SLS QP	
1: Structural Self-Weight [Freedom Case 1]	1,0	
2: Façade Cladding [Freedom Case 1]	1,0	
3: Non-Structural Dead Load [Freedom Case	1,0	
4: Live Load Distribution 1 [Freedom Case 1]	0,3	
5: Live Load Distribution 2 [Freedom Case 1]	0,3	
5: Wind Y+ [Freedom Case 1]	0,0	
CASES	2	
	SLS Rare Nmax	
1: Structural Self-Weight [Freedom Case 1]	1,0	
2: Façade Cladding [Freedom Case 1]	1,0	
3: Non-Structural Dead Load [Freedom Case	1,0	
4: Live Load Distribution 1 [Freedom Case 1]	1,0	
5: Live Load Distribution 2 [Freedom Case 1]	1,0	
5: Wind Y+ [Freedom Case 1]	0,6	
CASES	3	
	SLS Rare Mmax	
1: Structural Self-Weight [Freedom Case 1]	1,0	
2: Façade Cladding [Freedom Case 1]	1,0	
3: Non-Structural Dead Load [Freedom Case	1,0	
4: Live Load Distribution 1 [Freedom Case 1]	1,0	
5: Live Load Distribution 2 [Freedom Case 1]	0,0	
6: Wind Y+ [Freedom Case 1]	0,6	
CASES	4	
CRSES	4 ULS Nmax	
	ous minu	
1: Structural Self-Weight [Freedom Case 1]	1,35	
2: Façade Cladding [Freedom Case 1]	1,35	
3: Non-Structural Dead Load [Freedom Case	1,5	
4: Live Load Distribution 1 [Freedom Case 1]	1,5	
5: Live Load Distribution 2 [Freedom Case 1]	1,5	
5: Wind Y+ [Freedom Case 1]	0,9	
CASES	5	
CASES	D ULS Mmax	
<u>k</u>	VL3 PIRIAX	
1: Structural Self-Weight [Freedom Case 1]	1,35	
2: Façade Cladding [Freedom Case 1]	1,35	
3: Non-Structural Dead Load [Freedom Case	1,5	
4: Live Load Distribution 1 [Freedom Case 1]	0,0	
5: Live Load Distribution 2 [Freedom Case 1]	1,5	
5: Wind Y+ [Freedom Case 1]	0,9	



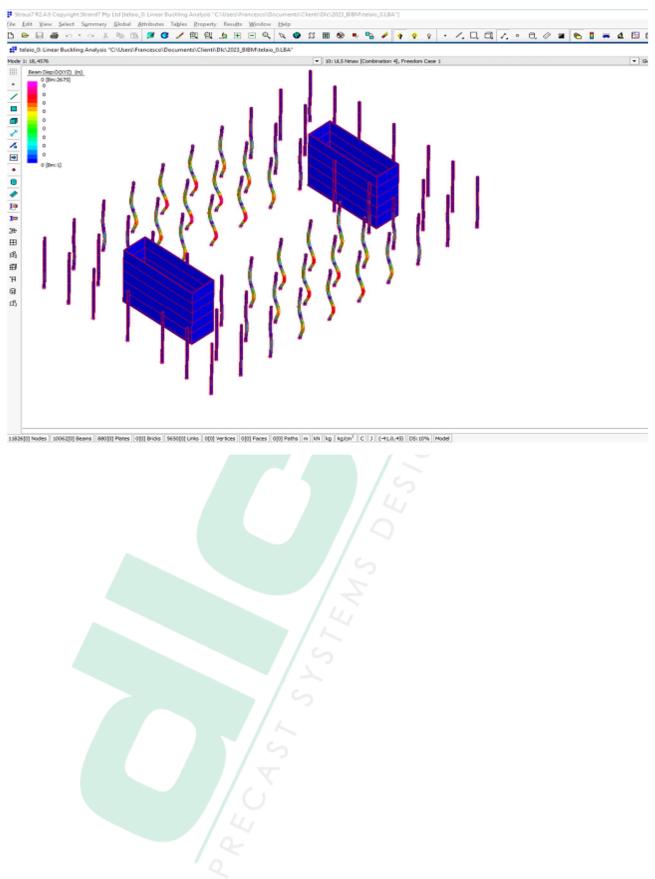


Straus7 R2.4.6 [Licenced to:DLC Consulting srl - MILANO] Model file: (:\Users\Francesco\Documents\Clientl\Dic\2023_BBBM\telaio_0.st7 10 agosto 2023 6:21 pm

2.2 Buckling analysis

The results of the linear buckling analysis are instrumental to describe a proper shear span length of the column element considered as a whole. This information is crucial for the application of the model column (curvature-based) calculation method as included in both EN1992-1-1:2004 and FprEN1992-1-1:2022.

The first buckling mode is associated – as expected – to the buckling of the central part of the long sides of the building, which is the most distanced from the bracing cores.


The first buckling shape, shown in the following image, is associated with the column deformation, accompanied by the deformation of the diaphragm.

The load multiplier associated with the elastic buckling main mode is equal to 18.5. This high value, although referred to an unproper elastic buckling of reinforced concrete members, suggests that the influence of 2^{nd} order effects in the considered structural arrangement is limited.

3 Material constitutive laws

This chapter describes the material constitutive laws of different classes and grades of concrete and steel materials employed in the project.

In particular, three types of concrete were used: C25/30 (cast-in-situ); C45/55 (precast); C80/95 (column HPC).

Moreover, three grades of steel were employed: prestressing steel (Y1860), mild reinforcing steel B500C for bar diameter equal or larger than Φ 16, and mild reinforcement steel B500A for bar diameter lower than $\Phi 16$.

Concerning the material partial safety coefficients, for both standards, reduced coefficients ($\gamma_{c,red}$ = 1.40 and $\gamma_{s,red} = \gamma_{p,red} = 1.10$) were adopted in the analysis when precast concrete production is envisaged. Materials involving cast-in-situ concrete production and in-situ caging were dealt with standard partial safety coefficients ($\gamma_c = 1.50$ and $\gamma_s = \gamma_p = 1.15$).

Specific comments about deviations from EN1992-1-1:2004 to FprEN1992-1-1:2022 are collected in the dedicated chapter at the end of the document.

3.1 Concrete constitutive law following EN1992-1-1:2004

The general calculation procedure is shown for concrete class C80/95, but after it the application to C45/55 and C25/30 is also shown.

Concrete (§3.1) cubic characteristic compressive resistance Rck := -95 MPa fck := -80 MPa cylindric characteristic compressive resistance MPa mean cylindric compressive resistance fcm := fck - 8 = -88material safety coefficient for concrete γc := 1.5 due to fulfillment of the conditions in A.2.1 γ cpcred := 1.4 $\gamma c := \gamma c p c red = 1.4$ $\alpha cc := 1$

100

Cylindrical design strength:

fcd := fck
$$\cdot \frac{\csc c}{\gamma cpcred}$$
 fcd = -57.143 MPa design cylindric compressive resistance
 $\varepsilon c1 := max \left[-0.0028, -0.001 \cdot 0.7 (-fcm)^{\frac{1}{3}} \right] = -2.8 \times 10^{-3}$
 $\varepsilon cu1 := if \left[fck < -50, -0.001 \cdot \left[2.8 + 27 \cdot \left(\frac{98 + fcm}{100} \right)^4 \right], -0.0035 \right] = -2.803 \times 10^{-3}$
 $\varepsilon c2 := if \left[fck < -50, -0.001 \cdot \left[2.0 + 0.085 \cdot (-fck - 50)^{0.53} \right], -0.002 \right] = -2.516 \times 10^{-3}$ strain defining constitutive law
 $\varepsilon cu2 := if \left[fck < -50, -0.001 \cdot \left[2.6 + 35 \cdot \left(\frac{(fck + 90)}{100} \right)^4 \right], -0.0035 \right] = -2.603 \times 10^{-3}$
 $\varepsilon c3 := if \left[fck < -50, -0.001 \cdot \left[1.75 + 0.55 \cdot \frac{(-fck - 50)}{40} \right], -0.00175 \right] = -2.163 \times 10^{-3}$
 $\varepsilon cu3 := \varepsilon cu2 = -2.603 \times 10^{-3}$
 $\varepsilon cu3 := \varepsilon cu2 = -2.603 \times 10^{-3}$
 $\varepsilon cu3 := \varepsilon cu2 = -2.603 \times 10^{-3}$
 $\varepsilon cu3 := \varepsilon cu2 = -2.603 \times 10^{-3}$
 $\varepsilon cu3 := if \left[fck < -50, -0.001 \cdot \left[\frac{(-fck - 90)}{40} \right]^4, 1.4 \right] = 1.402$

CONSTITUTIVE LAW OF CONCRETE IN COMPRESSION

Non linear EN1992-1-1:2004

$$\mathbf{k} \coloneqq 1.05 \cdot \mathbf{Ecm} \cdot \frac{\varepsilon c1}{\mathbf{fcm}} = 1.411$$

$$\sigma c_n \mathbf{lsa}(\varepsilon) \coloneqq \mathbf{if} \left[\varepsilon > \varepsilon cu1, \mathbf{fcm} \cdot \left[\frac{\mathbf{k} \cdot \left(\frac{\varepsilon}{\varepsilon c1}\right) - \left(\frac{\varepsilon}{\varepsilon c1}\right)^2}{1 + (\mathbf{k} - 2) \cdot \left(\frac{\varepsilon}{\varepsilon c1}\right)} \right], \mathbf{if} \left[(\varepsilon > 0), 0, 0 \right] \right]$$

Parabola-rectangle

$$\sigma \mathtt{c_pr}(\varepsilon) := \mathtt{if} \left[\varepsilon > \varepsilon \mathtt{c2}, \mathtt{fcd} \cdot \left[1 - \left(1 - \frac{\varepsilon}{\varepsilon \mathtt{c2}} \right)^2 \right], \mathtt{if}[(\varepsilon > \varepsilon \mathtt{cu2}), \mathtt{fcd}, 0] \right]$$

Triangle-rectangle

$$\sigma c_tr(\varepsilon) := if\left[\varepsilon > \varepsilon c3, \frac{fcd}{\varepsilon c3} \cdot \varepsilon, if[(\varepsilon > \varepsilon cu3), fcd, 0]\right]$$

Stress block

$$\begin{aligned} \lambda &:= if \left[fck < -45, 0.8 - \frac{(-fck - 50)}{400}, 0.8 \right] = 0.725 \\ \eta &:= if \left[fck < -45, 1 - \frac{(-fck - 50)}{200}, 1 \right] = 0.85 \end{aligned}$$

 $\sigma \mathtt{c_sb}(\epsilon) \coloneqq if[\epsilon > (1 - \lambda) \cdot \epsilon \mathtt{c3}, 0, if[(\epsilon > \epsilon \mathtt{cu3}), \eta \cdot \mathtt{fcd}, 0]]$

CONSTITUTIVE LAW OF CONCRETE IN TENSION

Linear elastic

$$fctm := if \left[fck < -50, 2.12 \cdot ln \left(1 - \frac{fcm}{10} \right), 0.3 \cdot (-fck)^{\frac{2}{3}} \right] = 4.839 \quad MPa \quad \text{mean tension strength}$$

$$\varepsilon ct := \frac{fctm}{Ecm} \qquad \varepsilon ct = 1.145 \times 10^{-4}$$

$$\sigma ct(\varepsilon) := if (0 \le \varepsilon < \varepsilon ct, Ecm \cdot \varepsilon, 0)$$

$$fctk := 0.7 \cdot fctm = 3.387 \quad MPa \quad \text{characteristic tension strength}$$

$$\alpha ct := 1$$

$$fctd := \alpha ct \cdot \frac{fctk}{\gamma c} = 2.419 \quad MPa \quad \text{design tension strength}$$

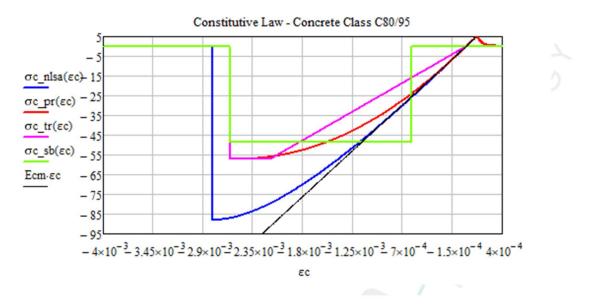
$$\varepsilon ct_pr := \frac{fctd}{Ecm}$$

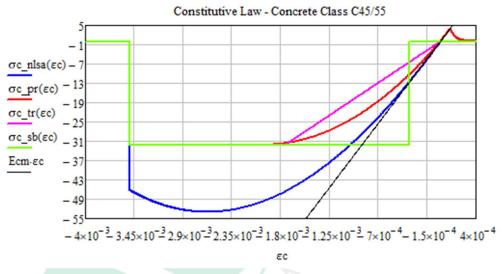
$$\sigma ct_pr(\varepsilon) := if (0 \le \varepsilon < \varepsilon ct_pr, Ecm \cdot \varepsilon, 0)$$
Linear elastic with softening

$$\sigma c_traz_soft(\varepsilon) := fctm \cdot \frac{1}{1 + \left(\frac{\frac{\varepsilon}{\varepsilon ct} - 1}{\frac{\varepsilon ct + 0.00005}{\varepsilon ct} - 1}\right)^2}$$

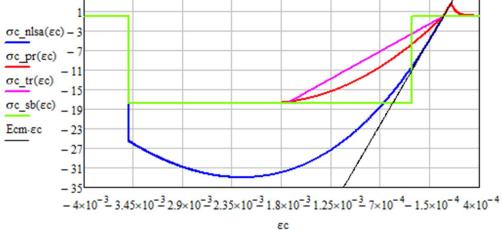
NOTE: post-peak formulation taken from Model Code needed for convergence easiness

 $\sigma cts(\epsilon) := if(0 \le \epsilon < \epsilon ct, Ecm \cdot \epsilon, if(\epsilon > \epsilon ct, \sigma c_traz_soft(\epsilon), 0))$


 $\underbrace{\sigma c}_{misa}(\varepsilon) := if(\varepsilon < 0, \sigma c_{nisa}(\varepsilon), \sigma cts(\varepsilon))$


$$\underbrace{\sigmac pr(\varepsilon)}_{:= if(\varepsilon < 0, \sigmac pr(\varepsilon), \sigmacts(\varepsilon))}$$

 $\sigma c tr(\varepsilon) := if(\varepsilon < 0, \sigma c tr(\varepsilon), 0)$



Constitutive Law - Concrete Class C25/30

5

3.2 Concrete constitutive law following FprEN1992-1-1:2022

The general calculation procedure is shown for concrete class C80/95, but at the end also the application to C45/55 and C25/30 is given.

Concrete (§5.1.6 + §8.1.2)

Rck := -95	MPa	cubic characteristic compressive resistance				
fck := -80	MPa	cylindric characteristic compressive resistance				
fcm := fck -	8 = -88	MPa	mean cylindric compressive resistance			
γc := 1.5 material safety coefficient for concrete						

ci = 1.4 due to fulfillment of case (a) in table A.1 (NDP) and AVCP 2+

ktc := 1

$$\eta cc := \left(\frac{40}{-fck}\right)^{\frac{1}{3}} = 0.794$$

Cylindrical design strength:

fcd := $\eta cc \cdot fck \cdot \frac{ktc}{\gamma c}$ fcd = -45.354 MPa design cylindric compressive resistance $\varepsilon c1 := max \left[-0.0028, -0.001 \cdot 0.7 (-fcm)^{\frac{1}{3}} \right] = -2.8 \times 10^{-3}$ $\varepsilon cu1 := max \left[-0.001 \cdot \left[2.8 + 14 \cdot \left(1 + \frac{fcm}{108} \right)^4 \right], -0.0035 \right] = -2.816 \times 10^{-3}$ strain defining constitutive law $\varepsilon c2 := -0.002$ $\varepsilon cu := -0.0035$ Ecm := 9500 \cdot (-fcm)^{\frac{1}{3}} = 4.226 \times 10^4 MPa Young (elastic) modulus

CONSTITUTIVE LAW OF CONCRETE IN COMPRESSION

Non linear EN1992-1-1:2004

$$\mathbf{k} \coloneqq 1.05 \cdot \mathbf{Ecm} \cdot \frac{\varepsilon c1}{\mathbf{fcm}} = 1.412$$
$$\sigma c_n lsa(\varepsilon) \coloneqq if \left[\varepsilon > \varepsilon cu1, \mathbf{fcm} \cdot \left[\frac{\mathbf{k} \cdot \left(\frac{\varepsilon}{\varepsilon c1} \right) - \left(\frac{\varepsilon}{\varepsilon c1} \right)^2}{1 + (\mathbf{k} - 2) \cdot \left(\frac{\varepsilon}{\varepsilon c1} \right)^2} \right], \text{if } [(\varepsilon > 0), 0, 0] \right]$$

Parabola-rectangle

$$\sigma \mathtt{c_pr}(\varepsilon) := \mathtt{if} \left[\varepsilon > \varepsilon \mathtt{c2}, \mathtt{fcd} \cdot \left[1 - \left(1 - \frac{\varepsilon}{\varepsilon \mathtt{c2}} \right)^2 \right], \mathtt{if}[(\varepsilon > \varepsilon \mathtt{cu}), \mathtt{fcd}, 0] \right]$$

Stress block

 $\sigma \mathtt{c_sb}(\epsilon) \coloneqq \mathtt{if}[\epsilon > (1 - 0.8) \cdot \epsilon \mathtt{c2}, 0, \mathtt{if}[(\epsilon > \epsilon \mathtt{cu}), \mathtt{fcd}, 0]]$

CONSTITUTIVE LAW OF CONCRETE IN TENSION

Linear elastic

fctm := if
$$\left[fck < -50, 1.1 \cdot (-fck)^{\frac{1}{3}}, 0.3 \cdot (-fck)^{\frac{2}{3}} \right] = 4.74$$
 MPa me
 $\varepsilon ct := \frac{fctm}{Ecm}$ $\varepsilon ct = 1.122 \times 10^{-4}$

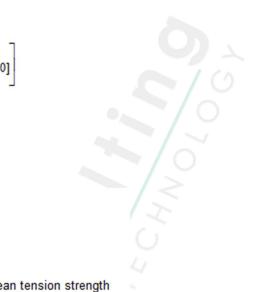
 $\sigma \operatorname{ct}(\varepsilon) := \operatorname{if}(0 \le \varepsilon < \varepsilon \operatorname{ct}, \operatorname{Ecm} \cdot \varepsilon, 0)$

fctk := 0.7.fctm

characteristic tension strength

ktt := 0.8

fctd := ktt
$$\frac{\text{fctk}}{\gamma c}$$
 = 1.896 MPa design tension strength
 $\varepsilon \text{ct_pr} := \frac{\text{fctd}}{\text{Ecm}} = 4.487 \times 10^{-5}$


 $\sigma ct_pr(\varepsilon) := if(0 \le \varepsilon < \varepsilon ct_pr, Ecm \cdot \varepsilon, 0)$

Linear elastic with softening

$$\sigma c_traz_soft(\varepsilon) := fctm \cdot \frac{1}{1 + \left(\frac{\frac{\varepsilon}{\varepsilon ct} - 1}{\frac{\varepsilon ct + 0.00005}{\varepsilon ct} - 1}\right)^2}$$

NOTE: post-peak formulation taken from Model Code needed for convergence easiness $\sigma cts(\varepsilon) := if(0 \le \varepsilon < \varepsilon ct, Ecm \cdot \varepsilon, if(\varepsilon > \varepsilon ct, \sigma c_traz_soft(\varepsilon), 0))$

$$\begin{split} & \underbrace{\sigma c \ nlsa(\varepsilon)}_{\leftarrow} := if(\varepsilon < 0, \sigma c \ nlsa(\varepsilon), \sigma cts(\varepsilon)) \\ & \underbrace{\sigma c \ pr(\varepsilon)}_{\leftarrow} := if(\varepsilon < 0, \sigma c \ pr(\varepsilon), \sigma cts(\varepsilon)) \\ & \underbrace{\sigma c \ sb(\varepsilon)}_{\leftarrow} := if(\varepsilon < 0, \sigma c \ sb(\varepsilon), 0) \end{split}$$

EFFECT OF CONFINEMENT REINFORCEMENT - EXAMPLE OF APPLICATION FOR STANDARD COLUMNS

Dlower := 16 mm

$$ddg := if \left[-fck > 60, 16 + Dlower \cdot \left(\frac{60}{-fck}\right)^2, 16 + Dlower \right] = 25$$

$$\frac{ddg}{ddg} := \min(ddg, 40) = 25$$

As_conf := $\pi \cdot \frac{10^2}{4}$ s.:= 200 mm fywd := $\frac{500}{1.1}$ = 454.545

bcs := 400 - 50

$$\sigma c2d := 2 \cdot \frac{As_conf}{s \cdot bcs} \cdot fywd = 1.02$$

$$\Delta fcd := if \left[\sigma c2d > 0.6 \cdot -fcd, 3.5 \cdot \sigma c2d^{\frac{3}{4}} \cdot (-fcd)^{\frac{1}{4}}, 4 \cdot \sigma c2d \right] = 4.08$$

$$\frac{\Delta fcd}{-fcd} = 0.09$$

$$kconf_b := \frac{1}{3} \cdot \left(\frac{bcs}{400}\right)^2 = 0.255$$

$$kconf_s := \left(1 - \frac{s}{2 \cdot bcs}\right)^2 = 0.51$$

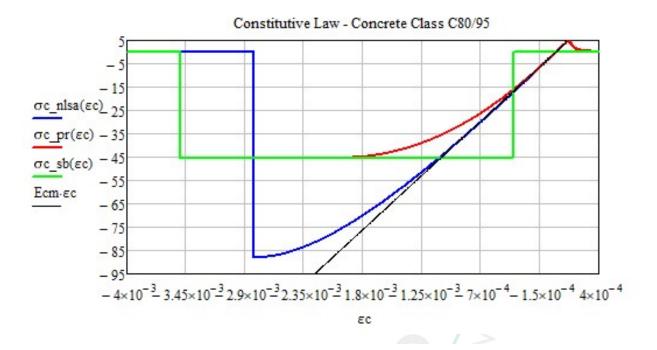
$$1 - \frac{s}{2 \cdot bcs} = 0.714$$

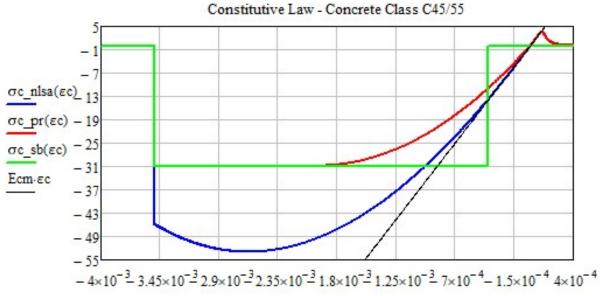
$$fcd_c := fcd - kconf_b \cdot kconf_s \cdot \Delta fcd = -45.886$$

$$\frac{fcd_c}{-fcd_c} = 1.012$$

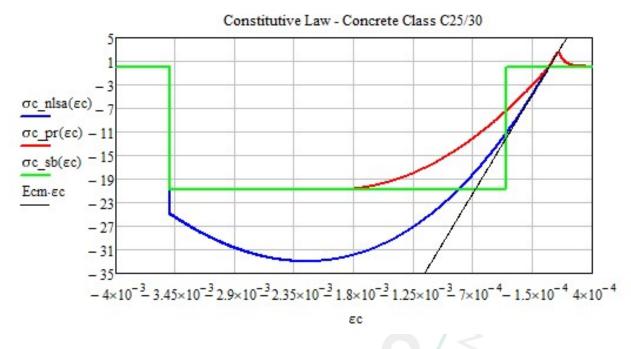
$$\varepsilon c_{c} = \varepsilon c_{c} \cdot \left(1 - 5 \cdot \frac{\Delta f c d}{f c d}\right) = -2.9 \times 10^{-3}$$

$$\varepsilon c_{c} = \varepsilon c_{c} + 0.2 \cdot \frac{\sigma c_{c} 2 d}{f c d} = -7.998 \times 10^{-3}$$


$$\frac{i c u_{c}}{c c} = 1.012$$


$$\frac{\varepsilon c_{c} 2}{\varepsilon c_{c}} = 1.45$$

$$\frac{\varepsilon c_{c} 2}{\varepsilon c_{c}} = 2.285$$



εc

3.3 Steel constitutive law following EN1992-1-1:2004

The general calculation procedure is shown for steel grade B500C, but at the end also the application to mild steel B500A and prestressing steel Y1860 is given.

Rebar steel B500C (3.2)

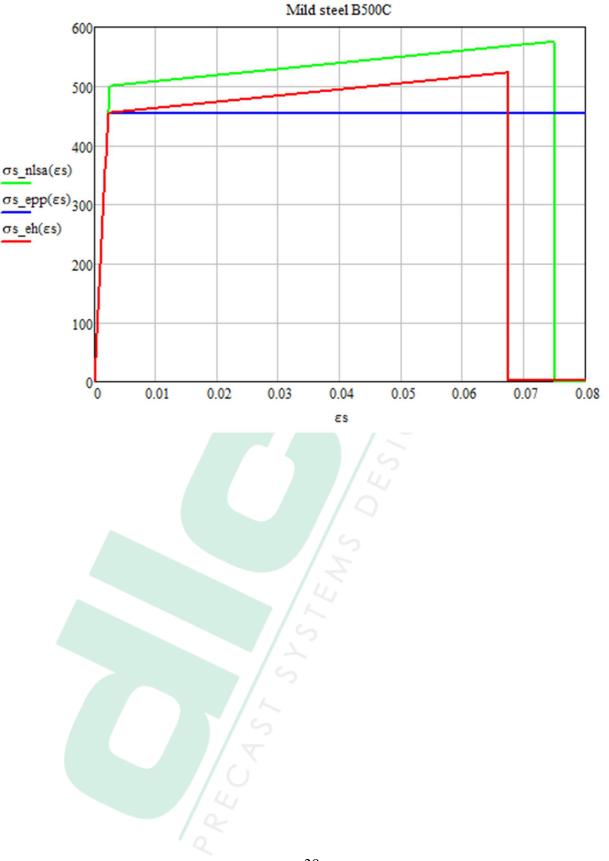
Mild reinforcement bar steel

γs := 1.15 Initial safety coefficient of mild steel γ spcred := 1.1 $\gamma s := \gamma spcred = 1.1$ reduced safety coefficient of steel MPa characteristic axial yield strength of mild steel fsk := 500 $fsd := \frac{fsk}{\gamma spcred} = 454.545$ design axial yield strength of mild steel MPa characteristic axial ultimate strength of mild steel MPa $fsuk := fsk \cdot 1.15 = 575$ $fsud := \frac{fsuk}{\gamma spcred} = 522.727$ design axial ultimate strength of mild steel MPa MPa Young (elastic) modulus Es := 200000 $\varepsilon s_y := \frac{fsd}{Fs}$ $\varepsilon s_y = 2.27273 \times 10^{-3}$ yield strain ϵ uk := 0.075 strain at stress peak (conventional) design strain at stress peak ε ud := 0.9 \cdot ε uk = 0.068

Elastic-hardening

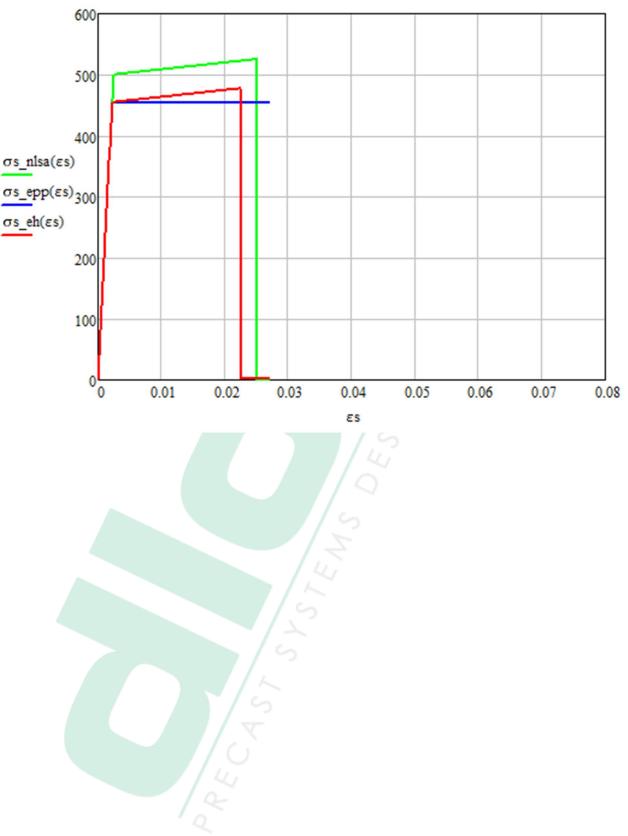
$$\sigma \underline{s_nlsa}(\varepsilon) := if\left[\varepsilon \ge \frac{fsk}{Es} \land \varepsilon < \varepsilon uk, fsk + \frac{fsuk - fsk}{\varepsilon uk - \frac{fsk}{Es}} \cdot \left(\varepsilon - \frac{fsk}{Es}\right), if\left(\varepsilon < \frac{fsk}{Es}, Es \cdot \varepsilon, 0\right)\right]$$

Elastic-perfect-plastic


 $\sigma s_epp(\varepsilon) := if(\varepsilon > \varepsilon s_y, fsd, if(\varepsilon < \varepsilon s_y, Es \cdot \varepsilon, 0))$

Elastic-hardening

$$\sigma s_eh(\varepsilon) := if \left[\varepsilon > \varepsilon s_y \land \varepsilon < \varepsilon ud, fsd + \frac{fsud - fsd}{\varepsilon ud - \varepsilon s_y} \cdot (\varepsilon - \varepsilon s_y), if (\varepsilon < \varepsilon s_y, Es \cdot \varepsilon, 1) \right]$$



Mild steel B500A

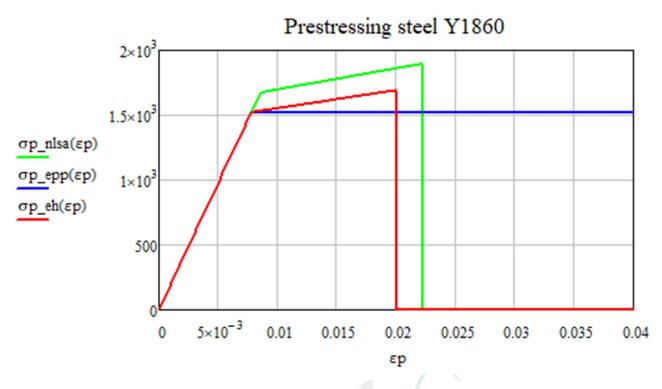
Prestressing steel Y1860 (§3.3)

γp := 1.15	Material safety coefficient for mild steel			
<u>,,,,,</u> := 1.1	due to fulfillment of the conditions in A.2.1			
Ep := 195000 MPa	Young (elastic) modulus			
fptk := 1860 MPa	Characteristic ultimate strength of prestressing steel in tension/compression			
$\mathbf{fptd} := \mathbf{fptk} \cdot \frac{1}{\gamma \mathbf{p}}$	Design ultimate strength of prestressing steel in tension/compression			
εpud := 0.02	design ultimate strain			
ε puk := $\frac{\varepsilon$ pud}{0.9} = 0.022	characteristic ultimate strain			
$fp01k := 0.9 \cdot fptk$	Characteristic strength of prestressing steel in tension/compression at 0.1% of residual strain			
$\mathbf{fp01d} := \frac{\mathbf{fp01k}}{\gamma p} = 1.522 \times 10^3 \text{ MPa}$	Design strength of prestressing steel in tension/compression at 0.1% of residual strain			
$\varepsilon_{py} := \frac{\mathbf{f}p01\mathbf{d}}{\mathbf{E}p} = 7.804 \times 10^{-3}$	design equivalent yield strain			

Non-linear structural analysis

$$\sigma \underline{p_nlsa}(\varepsilon) := if \left[\varepsilon > \frac{fp01k}{Ep} \land \varepsilon < \varepsilon puk, fp01k + \frac{fptk - fp01k}{\varepsilon pud - \frac{fp01k}{Ep}} \cdot \left(\varepsilon - \frac{fp01k}{Ep} \right), if \left(\varepsilon < \frac{fp01k}{Ep}, Ep \cdot \varepsilon, 0 \right) \right]$$

Elastic-perfect-plastic


$$\sigma \mathtt{p_epp}(\varepsilon) \coloneqq \mathtt{if}(\varepsilon > \varepsilon \mathtt{py}, \mathtt{fp01d}\,, \mathtt{if}(\varepsilon < \varepsilon \mathtt{py}, \mathtt{Ep} \cdot \varepsilon\,, 0))$$

Elastic-hardening

$$\sigma p_eh(\epsilon) := if \left[\epsilon > \epsilon py \land \epsilon < \epsilon pud, fp01d + \frac{fptd - fp01d}{\epsilon pud - \epsilon py} \cdot (\epsilon - \epsilon py), if (\epsilon < \epsilon py, Ep \cdot \epsilon, 0)\right]$$

3.4 Steel constitutive law following FprEN1992-1-1:2022

The general calculation procedure is shown for prestressing steel grade Y1860, but at the end also the application to mild steel B500C and mild steel B500A (equal to the previous standard) is given.

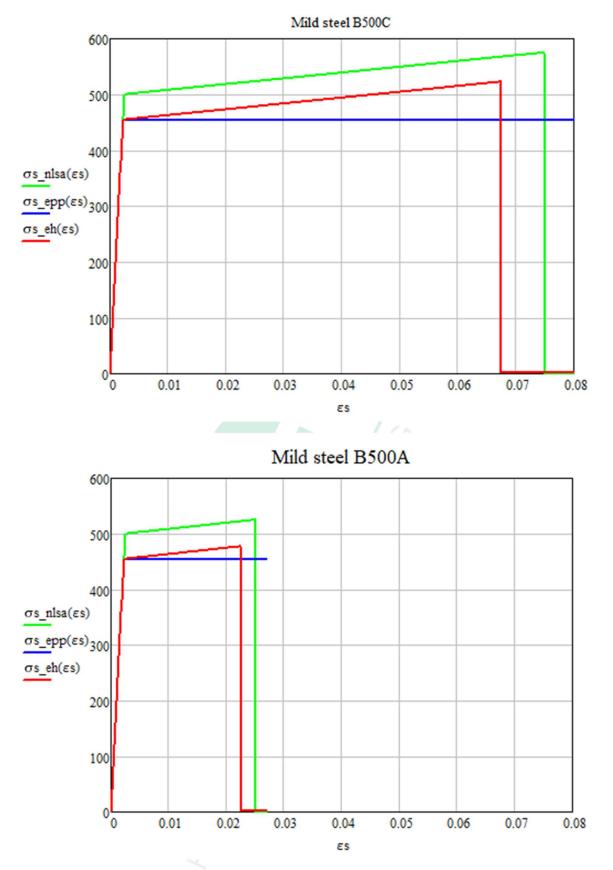
Prestressing steel Y1860

$\gamma p := 1.15$	Material safety coefficient for mild steel						
χp.≔ 1.1	due to fulfillment of case (a) in table A.1 (NDP) and AVCP 2+						
Ep := 195000 MPa	Elastic modulus						
fptk := 1860 MPa	Characteristic ultimate strength of prestressing steel in tension/compression						
$fptd := fptk \cdot \frac{1}{\gamma p} = 1.691 \times 1$	10 ³ MPa Design ultimate strength of prestressing steel in tension/compression						
εpuk := 0.035	design ultimate strain						
ε pud := 0.9· ε puk = 0.032	characteristic ultimate strain						
fp01k := 1640 MPa	Characteristic strength of prestressing steel in tension/compression at 0.1% of residual strain						
$fp01d := \frac{fp01k}{\gamma p} = 1.491 \times 1$	0 ³ MPa Design strength of prestressing steel in tension/compression at 0.1% of residual strain						
$\varepsilon_{py} := \frac{fp01d}{Ep} = 7.646 \times 10^{-1}$	- 3 design equivalent yield strain						
Non-linear structural analy	sis						
$\sigma p_n lsa(\varepsilon) := if \left[\varepsilon > \frac{fp01k}{r}\right]$	$\epsilon \wedge \epsilon < \epsilon \text{puk}, \text{fp01k} + \frac{\text{fptk} - \text{fp01k}}{\epsilon} \cdot \left(\epsilon - \frac{\text{fp01k}}{\epsilon}\right), \text{if} \left(\epsilon < \frac{\text{fp01k}}{\epsilon}, \text{Ep} \cdot \epsilon, 0\right)$						

$$\frac{\partial p_{msa(e)} = u}{Ep} = \frac{e}{Ep} + \frac{e}{e} + \frac{e}{epuk, ipolk} + \frac{e}{epud} - \frac{fp0lk}{Ep} + \frac{e}{Ep} + \frac{$$

Elastic-perfect-plastic

 $\sigma \mathtt{p_epp}(\varepsilon) \coloneqq \mathtt{if}(\varepsilon > \varepsilon \mathtt{py}, \mathtt{fp01d}, \mathtt{if}(\varepsilon < \varepsilon \mathtt{py}, \mathtt{Ep} \cdot \varepsilon, \mathtt{0}))$


Elastic-hardening

$$\sigma p_eh(\epsilon) := if \left[\epsilon > \epsilon py \land \epsilon < \epsilon pud, fp01d + \frac{fptd - fp01d}{\epsilon pud - \epsilon py} \cdot (\epsilon - \epsilon py), if (\epsilon < \epsilon py, Ep \cdot \epsilon, 0)\right]$$

 $\varepsilon p := 0, 0.0001.. \varepsilon pud \cdot 2$

44

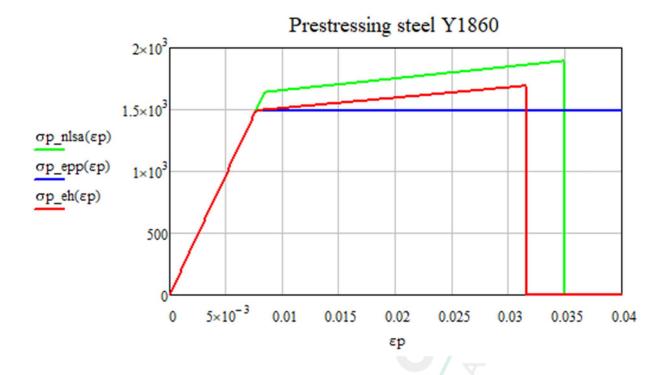
Prestressing steel Y1860

γp := 1.15	Material safety coefficient for mild steel						
<u>,,,,,</u> ;= 1.1	due to fulfillment of case (a) in table A.1 (NDP) and AVCP 2+						
Ep := 195000 MPa	Elastic modulus						
fptk := 1860 MPa	Characteristic ultimate strength of prestressing steel in tension/compression						
$fptd := fptk \cdot \frac{1}{\gamma p} = 1.691 \times 1$	0 ³ MPa Design ultimate strength of prestressing steel in tension/compression						
ε puk := 0.035	design ultimate strain						
ε pud := 0.9· ε puk = 0.032	characteristic ultimate strain						
fp01k := 1640 MPa	Characteristic strength of prestressing steel in tension/compression at 0.1% of residual strain						
$fp01d := \frac{fp01k}{\gamma p} = 1.491 \times 10^{-10}$	MPa Design strength of prestressing steel in tension/compression at 0.1% of residual strain						
$\varepsilon_{py} := \frac{fp01d}{Ep} = 7.646 \times 10^{-1}$	³ design equivalent yield strain						
Non-linear structural analys	sis						

Non-linear structural analysis

$$\sigma \underline{\mathbf{p}}_{nlsa}(\varepsilon) := i \mathbf{f}_{\mathbf{p}} \varepsilon > \frac{\mathbf{f}_{\mathbf{p}} \mathbf{0} \mathbf{1} \mathbf{k}}{\mathbf{E} \mathbf{p}} \land \varepsilon < \varepsilon \mathbf{p} \mathbf{u} \mathbf{k}, \mathbf{f}_{\mathbf{p}} \mathbf{0} \mathbf{1} \mathbf{k} + \frac{\mathbf{f}_{\mathbf{p}} \mathbf{k} - \mathbf{f}_{\mathbf{p}} \mathbf{0} \mathbf{1} \mathbf{k}}{\varepsilon \mathbf{p} \mathbf{u} \mathbf{d} - \frac{\mathbf{f}_{\mathbf{p}} \mathbf{0} \mathbf{1} \mathbf{k}}{\mathbf{E} \mathbf{p}}} \cdot \left(\varepsilon - \frac{\mathbf{f}_{\mathbf{p}} \mathbf{0} \mathbf{1} \mathbf{k}}{\mathbf{E} \mathbf{p}}\right), i \mathbf{f} \left(\varepsilon < \frac{\mathbf{f}_{\mathbf{p}} \mathbf{0} \mathbf{1} \mathbf{k}}{\mathbf{E} \mathbf{p}}, \mathbf{E}_{\mathbf{p}} \cdot \varepsilon, \mathbf{0}\right)$$

Elastic-perfect-plastic


 $\sigma p_epp(\varepsilon) \coloneqq if(\varepsilon > \varepsilon py, fp01d \,, if(\varepsilon < \varepsilon py, Ep \cdot \varepsilon \,, 0))$

Elastic-hardening

$$\sigma p_eh(\varepsilon) := if \Biggl[\varepsilon > \varepsilon py \land \varepsilon < \varepsilon pud, fp01d + \frac{fptd - fp01d}{\varepsilon pud - \varepsilon py} \cdot (\varepsilon - \varepsilon py), if (\varepsilon < \varepsilon py, Ep \cdot \varepsilon, 0) \Biggr]$$

3.5 Concrete time-dependent behaviour following EN1992-1-1:2004

CONCRETE STRENGTH DEVELOPMENT THROUGH TIME

 $s_{\text{Ne}} = 0.2 \quad \text{for class 52.5R cement}$ $s_{\text{S}} \left[1 - \left(\frac{28}{t}\right)^{\frac{1}{2}} \right]$ $\text{Bcc}(t) := e^{\left[1 - \left(\frac{28}{t}\right)^{\frac{1}{2}} \right]}$ $\text{Ecj}(t) := \text{Ecm} \cdot \beta \text{cc}(t)^{0.3}$ $\text{fcmj}(t) := \beta \text{cc}(t) \cdot \text{fcm}$ fckj(t) := fcmj(t) - 8 $\text{fctmj}(t) := \text{if} \left(t < 28, \beta \text{cc}(t) \cdot \text{fctm}, \beta \text{cc}(t)^{\frac{2}{3}} \cdot \text{fctm} \right)$ $\text{fctdj}(t) := 0.7 \cdot \frac{\alpha \text{cc} \cdot \text{fctmj}(t)}{\gamma \text{c}}$

for class CR cement

3.6 Concrete time-dependent behaviour following FprEN1992-1-1:2022

CONCRETE STRENGTH DEVELOPMENT THROUGH TIME

tref := 28

$$\begin{aligned} & \mathrm{sc} \coloneqq \mathrm{if}(-\mathrm{fck} \leq 35, 0.3, \mathrm{if}(-\mathrm{fck} \geq 60, 0.1, 0.2)) = 0.2 \\ & \beta \mathrm{cc}(t) \coloneqq \mathrm{if}\left[t < \mathrm{tref}, \mathrm{e}^{\frac{\mathrm{sc}}{1} - \sqrt{\frac{\mathrm{tref}}{t}}}, \sqrt{\frac{28}{\mathrm{tref}}}, 1\right] \\ & \frac{1}{2} \end{aligned}$$

 $Ecj(t) := Ecm \cdot \beta cc(t)^3$

 $fcmj(t) := \beta cc(t) \cdot fcm$

 $fctmj(t) := \beta cc(t)^{0.6} \cdot fctm$

4 Minimum concrete cover

This chapter describes the minimum concrete cover (clear cover – from out of the bar diameter to the concrete edge) calculated according to the two standards. As described in the comment chapter, the procedure employed is the same for the two standards.

4.1 Exposure class XC1

MINIMUM CONCRETE COVER

initial structural class S4	nominal strand diameter	
exp_class_XC := 1		12.7 mm 0.5'
cmin b s := 10	max diametre of rebar	15.24 mm 0.6'
$cmin_b_p := 2.5 \cdot 15.24 = 38.1$	associated to 0.6'	
	1 10 10/ - 1 - XO - 1 - 25 10/ - 1	s XC = 0.10.20))) S3
	1,10,if(exp_class_XC = 4,25,if(exp_clas	
cmin_dur_p := if(exp_class_XC =	$1,20, if(exp_class_XC = 4,35, if(exp_class_XC = 4,35)$	s_XC = 0,10,30))) S3
$\Delta cdur_{\gamma} := 0$		
$\Delta cdur_st := 0$		
$\Delta cdur_add := 5$		
$\Delta c_dev := 5$ for precast n	nembers with production control	
cmin_s := max(cmin_b_s,cmin_dur	$r_s + \Delta cdur_\gamma - \Delta cdur_st - \Delta cdur_add$	1,10) = 10 mm
cmin_p := max(cmin_b_p,cmin_du	$r_p + \Delta cdur_\gamma - \Delta cdur_st - \Delta cdur_add$	d,10) = 38.1 mm
$cnom_s := cmin_s + \Delta c_dev = 15$	mm	
$cnom_p := cmin_p + \Delta c_dev = 43$.1 mm cnom_p + -	$\frac{15.24}{2} = 50.72$

4.2 Exposure class XC2

MINIMUM CONCRETE COVER

initial structural class S4

exp_class_XC := 2

cmin_b_s := 10

nominal strand diameter 12.7 mm 0.5' max diametre of rebar 15.24 mm 0.6'

cmin_b_p := 2.5-15.24 = 38.1 associated to 0.6'

 $cmin_dur_s := if(exp_class_XC = 1, 10, if(exp_class_XC = 4, 25, if(exp_class_XC = 0, 10, 20)))$ S3

$$cmin_dur_p := if(exp_class_XC = 1, 20, if(exp_class_XC = 4, 35, if(exp_class_XC = 0, 10, 30)))$$
S3

 $\Delta cdur_{\gamma} := 0$

 $\Delta cdur_st := 0$

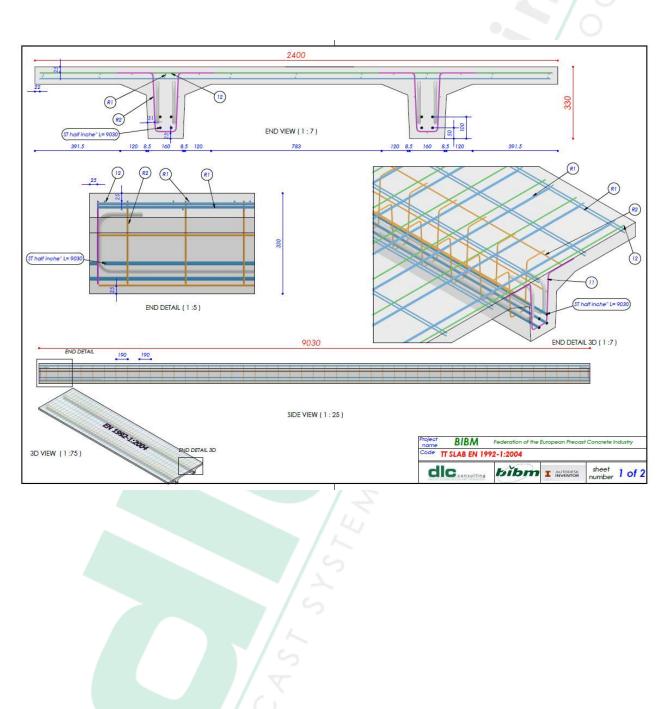
 $\Delta cdur_add := 5$

∆c_dev := 5 for precast members with production control

 $cmin_s := max(cmin_b_s, cmin_dur_s + \Delta cdur_\gamma - \Delta cdur_st - \Delta cdur_add, 10) = 15 \qquad mm$

 $cmin_p := max(cmin_b_p, cmin_dur_p + \Delta cdur_\gamma - \Delta cdur_st - \Delta cdur_add, 10) = 38.1 mm$

 $cnom_s := cmin_s + \Delta c_dev = 20$ mm $cnom_p := cmin_p + \Delta c_dev = 43.1$ mm


cnom_p + $\frac{15.24}{2}$ = 50.72

5 TT element – EN1992-1:2004

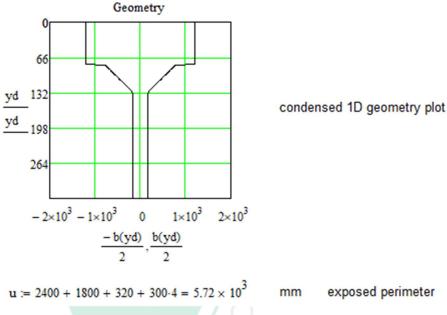
5.1 Shop drawings

humbnail	Part Number	QĪY	Mass	Total mass	Ø_	Ø_longitudinai	pattern_T	Ø_transverse	pattern_L	CODE		DESCRIPTION
1	11	4	208	832	6 mm					TT001 CONCRE	πE	TT SLAB 001 CONCRETE
/	12	24	522	12528	6 mm					5		0.00
/	21	8	2026	16208	16 mm							
	Total mass reban	[kg]		29,57	lr	ncidence kg/m ^s	11,33					
	RI	2	41610	83220		6 mm	200 mm	6 mm	300 mm			
/	R2	2	18683	37366		6 mm	200 mm	6 mm	190 mm	and the second second		
tal mass	welded-wire-meshe	[kg]		120,59	İr	ncidence kg/mª	46.20			Sull'		
	ST half inche" L= 9030	8	6599	52792	12,7 mm							
	Total mass strands	[kg]		52,792	b	ncidence kg/m³	20,23			~		All and a state of the state of
	Total mass of stee	[kg]		202,95	-	Total concrete	volume (m²)	2,61				
	יוסומו (ומגג סיג אפט	159		202,75		Total concrete		2,61				
										 ame BIBM		n of the European Precas 4
										dic	bib	
										Consulting and the set	¥	- INVENTOR

5.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete


Depth from upper chord

 $y_tr := (0 \ 79.99 \ 80 \ 130 \ 330)^T$

 $Htot := max(y_tr)$ maximum depth

Width of corresponding chord:

 $b_{tr} := (2400 \ 2400 \ 1566 \ 354 \ 320)^{T}$ radius of central void pipe r_circ := 0 $x_{circ}(y) := 2 \sqrt{r_{circ}^2 - \left(y - \frac{Htot}{2}\right)^2}$ $b_{lin}(y) := linterp(y_{tr}, b_{tr}, y)$ b_circ(y) := linterp(y_tr,b_tr,y) - x_circ(y) $b(y) := if \left[y \le \left(\frac{Htot}{2} + r_circ \right) \land y \ge \frac{Htot}{2} - r_circ, b_circ(y), b_lin(y) \right]$

52

bibm

Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (25 \ 300)^T$

Area of reinforcement at each depth

$$As := (12 \cdot A(6) 2 \cdot A(6))^T$$

js := rows(As) js = 2

dsmax := max(ds) dsmax = 300

$$As_{tot} := \sum_{j=1}^{J^{S}} As_{j} = 395.841$$

Prestressing reinforcement

nominal strand diameter Area of a single strand: 12.7 mm 0.5' nominal strand diameter Ap0 := 93 $\phi p := 12.7$ mm 15.24 mm 0.6' Depth of prestressing strands from upper chord: $dp := (180 \ 230 \ 280)^{T}$ Area of strands at each depth: $Ap := (0 \cdot Ap0 \quad 4 \cdot Ap0 \quad 4 \cdot Ap0)^T$ MPa σp0 := 1400 $\sigma \texttt{prec} \coloneqq (0.4 \cdot \sigma \texttt{p0} \ 1 \cdot \sigma \texttt{p0} \ \sigma \texttt{p0})^T \qquad \text{ initial prestressing}$ losses := $0 \cdot (1 \ 1 \ 1)^{T}$ in percentual % (losses are introduced later) jp := rows(Ap) jp = 3k := 1.. jp $\sigma_{\mathbf{k}} \coloneqq \sigma_{\mathbf{k}} \left[\frac{\left(100 - 1 \text{ osses}_{\mathbf{k}}\right)}{100} \right]$ $\sigma \mathbf{o} = \begin{pmatrix} 560\\ 1.4 \times 10^3\\ 1.4 \times 10^3 \end{pmatrix}$ $Ap_tot := \sum_{k=1}^{jp} Ap_k \qquad Ap_tot = 744$ ypmax := max(dp) ypmax = 280 $Np_tot := \sum_{k=1}^{jp} \left(\left(Ap_k \cdot \sigma o_k \right) \right)$ $Np_tot = 1.042 \times 10^6$ total prestressing initial force
$$\begin{split} \mathrm{Y}\mathbf{p} &:= \frac{\displaystyle\sum_{k=1}^{JP} \left(\mathrm{d}\mathbf{p}_k \cdot \mathrm{A}\mathbf{p}_k \cdot \sigma \mathbf{o}_k \right)}{\displaystyle\sum_{k=-1}^{JP} \left(\mathrm{A}\mathbf{p}_k \cdot \sigma \mathbf{o}_k \right)} = 255 \qquad \text{mm} \qquad \text{centre of gravity of prestressing} \end{split}$$

0 $\sigma c(\varepsilon) - 10$ σcc(ε) 0 -20- 30 - 40 - 4×10⁻³ - 2×10⁻³ 0 ε 500 $\sigma s(\varepsilon)$ - 500 0.05 - 0.05 0 ε 2.046×10³ 1.023×10³ σ**p**(ε) 0 -1.023×10^{3} - 2.046×10³ - 0.02 0.01 - 0.01 0 0.02 ε

5.3 Material constitutive laws employed in the calculation

5.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{Htot} b(y) \, dy$$
$$\rho s := \frac{As_tot}{Ac} = 1.288 \times 10^{-3}$$

 $Ac = 3.074 \times 10^{5}$

geometric ratio for longitudinal mild reinforcement

 $\rho p := \frac{Ap_tot}{Ac} = 2.42 \times 10^{-3}$

geometric ratio for longitudinal prestressing tendons

 $ptot := \frac{As_tot + Ap_tot}{Ac} = 3.708 \times 10^{-3}$ total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy$$
 Syc = 2.785 × 10⁷

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 90.619$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy \qquad \text{Ixo_cls} = 2.109 \times 10^9$$

Global area of all prestressing reinforcement

Area_tr :=
$$s \leftarrow 0$$
 Area_tr = 744
for $x \in 1...jp$
 $s \leftarrow Ap_x + s$

First moment of the area referred to prestressing reinforcement only

$$Sxp := \sum_{i=1}^{Jp} (Ap_i dp_i) \qquad Sxp = 1.897 \times 10^5$$

Centre of gravity of prestressing

$$\underline{Yp} := \frac{Sxp}{Area_{tr}} \qquad Yp = 255$$

Idealisation coefficients (elastic)

$$np := \frac{Ep}{Ecm} \qquad np = 5.374$$
$$ns := \frac{Es}{Ecm} \qquad ns = 5.512$$

Area of ideal cross-section

Aid := Ac + (np - 1)
$$\cdot \sum_{j=1}^{jp} Ap_j + (ns - 1) \cdot \sum_{j=1}^{js} As_j$$
 Aid = 3.124 × 10⁵

First moment of the reinforced concrete area

$$Sxid := Ac \cdot yG + (np - 1) \cdot (Area_tr \cdot Yp) + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$

$$Sxid = 2.88 \times 10^7$$

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 92.181

Second moment of the concrete area subtracting the effect of reinforcement

$$Ixoidcls := \int_{0}^{Htot} b(y) \cdot (y - Yid)^{2} dy - \sum_{i=1}^{jp} \left[Ap_{i} \cdot \left(dp_{i} - Yid \right)^{2} \right] - \sum_{j=1}^{js} \left[As_{j} \cdot \left(ds_{j} - Yid \right)^{2} \right]$$

Second moment of the prestressing reinforcement area

Ixoidprec :=
$$np \cdot \sum_{i=1}^{jp} \left[Ap_i \cdot (dp_i - Yid)^2 \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{Js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidprec + Ixoidlenta
$$Ixo_id = 2.216 \times 10^9 \text{ mm}^4 \frac{Ixo_id}{Ixo_cls} = 1.051$$

5.5 Loads

LOADS

interaxis := 2400 mm

 $g1 := Ac \cdot 0.000025 = 7.685 \quad kN/m \qquad \text{dead load from self-weight}$ $g2 := 2 \cdot \frac{\text{interaxis}}{1000} = 4.8 \quad kN/m \qquad \text{nonstructural dead load}$ $q := 3 \cdot \frac{\text{interaxis}}{1000} = 7.2 \quad kN/m \qquad \text{live load}$

L:= \$\$50 mm calculation length (span between supports)

ψ2 := 0.3 non-contemporaneity factor for quasi-permanent load combination

ψ1 := 0.5 non-contemporaneity factor for frequent load combination

.

$$\begin{split} \text{Mq_SLSg1}(x) &:= (g1) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right) & \text{SLS bending moment distribution from self-weight load} \\ \text{Mq_SLSg2}(x) &:= (g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right) & \text{SLS bending moment distribution from nonstructural dead load} \\ \text{Mq_SLSq}(x) &:= (q \cdot \psi2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right) & \text{SLS bending moment distribution from nonstructural dead load} \\ \end{split}$$

5.6 Prestressing transfer and time-dependent behaviour

TRANSFER OF PRESTRESS (§8.10.2.2)

α1 := 1 gradual release of prestressing						
α2 := 0.19	for 7-wire st	rands				
$\sigma pm0 := \sigma p0 = 1.4 \times 10^3$ MPa			initial prestressing			
ηp1 := 3.2 for 7-wire strands						
$\eta 1 \coloneqq 1$	in favourable	position				
$fbpt := \eta p1 \cdot \eta 1 \cdot fctdj(2) = 3.51$		MPa	equivalent constant bond stress at prestress realease following §(8.15)			
lpt := $\frac{\alpha 1 \cdot \alpha 2 \cdot \sigma p}{\text{fbpt}}$	$\frac{1}{2} \cdot \phi p = 962.53$	87	mm	basic value of the transmission length following §(8.16)		
lpt1 := 0.81pt =	770.069	mm		lower-bound transfer length following §(8.17)		
lpt2 := 1.2·lpt =	1.155 × 10 ³	mm		upper-bound transfer length following §(8.18)		

Prestress losses

- hn := $2 \cdot \frac{Ac}{u} = 107.477$
- $\varepsilon cs := \frac{0.65}{1000} = 6.5 \times 10^{-4}$ shrinkage strain assumed as a result of laboratory tests on the specific concrete mix employed

kρ := 0.16

 $t := 50.365 = 1.825 \times 10^4$ days Life span

mm

$$\sigma cpQP2(x) := \frac{-Np_tot}{Aid} + \frac{[Mq_SLSg1(x) - Np_tot \cdot (Yp - Yid)] \cdot (Yp - Yid)}{Ixo_id} \qquad \sigma cpQP2\left(\frac{L}{2}\right) = -10.265 \qquad MPa$$

stress in quasi-permanent load combination at 2 days (conventional equivalent time for prestressing release)

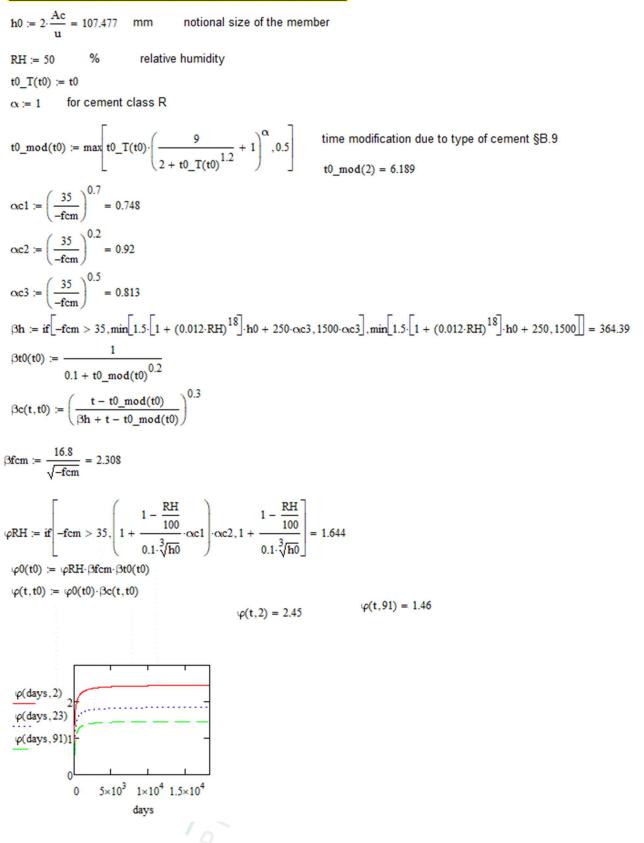
$$\sigma cpQP23(x) := \frac{Mq_SLSg2(x) \cdot (Yp - Yid)}{Ixo id}$$

$$\sigma cpQP23\left(\frac{L}{2}\right) = 3.452$$
 MPa

stress in quasi-permanent load combination at 23 days (conventional time for assemblage of the structure on site)

$$\sigma cpQP91(x) := \frac{Mq_SLSq(x) \cdot (Yp - Yid)}{Ixo id}$$

$$\sigma cpQP91\left(\frac{L}{2}\right) = 1.553$$
 MPa


stress in quasi-permanent load combination at 91 days (conventional time for enter in use of the structure)

$$\Delta \sigma pr(\mathbf{x}, \mathbf{t}) := \left[\sigma p0 + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(\mathbf{x}) + \sigma cpQP23(\mathbf{x}) + \sigma cpQP91(\mathbf{x})) \right] \cdot \rho 1000 \cdot \left(\frac{24 \cdot \mathbf{t}}{1000}\right)^{k\rho}$$

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

TIME-DEPENDENT LOSSES OF PRESTRESS (§5.10.6)

$$\Delta \sigma p_csr(x,t) := \frac{-\varepsilon cs \cdot Ep - 0.8 \cdot \Delta \sigma pr(x,t) + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) \cdot \varphi(t,2) + \sigma cpQP23(x) \cdot \varphi(t,23) + \sigma cpQP91(x) \cdot \varphi(t,91))}{1 + \frac{Ep}{Ecm} \cdot \frac{Ap_tot}{Ac} \cdot \left[1 + \frac{Ac}{Ixoidcls} \cdot (Yp - Yid)^2\right] \cdot \left(1 + 0.8 \cdot \frac{\varphi(t,2) \cdot \sigma cpQP2(x) + \varphi(t,23) \cdot \sigma cpQP23(x) + \varphi(t,91) \cdot \sigma cpQP91(x)}{\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)}\right)}$$

$$prestress losses following \S(5.46)$$

NOTE: a weighed creep coefficient was considered accounting for the 3 load phases previously introduced

 $\frac{\sigma pm(x,t) := \sigma p0 - \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) + \Delta \sigma p_csr(x,t)}{\sigma p0} = 0.852$ expected residual prestress ratio after 50 years of life with respect to initial

$$\varepsilon pm := \frac{\sigma pm \left(\frac{L}{2}, 365 \cdot 50\right)}{\sigma p0} \cdot \varepsilon p0$$

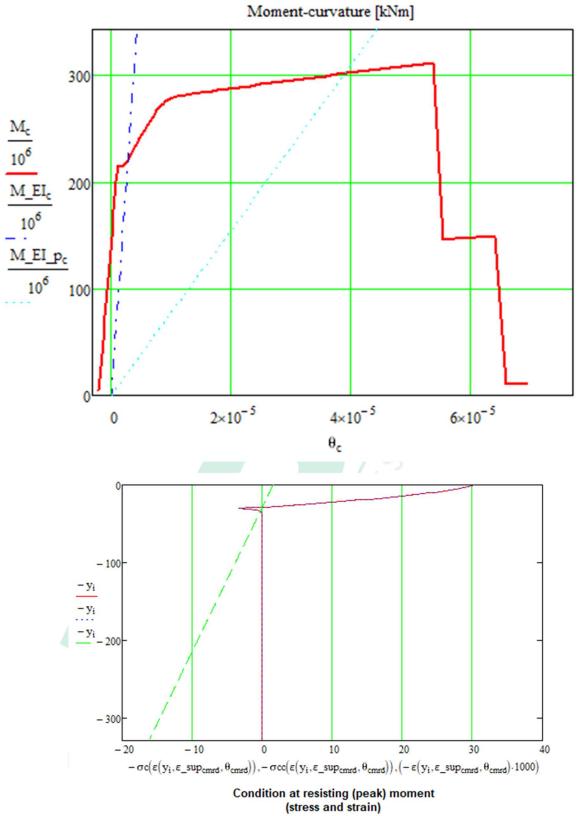
expected residual strain after 50 years of life with respect to initial

 $\sigma pm\left(\frac{L}{2}, 365 \cdot 50\right) \cdot Ap_tot = 8.876 \times 10^5$ N residual prestress force after 50 years of life

$Np_{tot} = 1.042 \times 10^6$ N initial prestress force

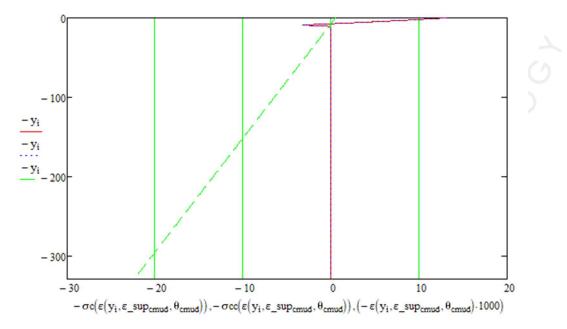
5.7 Non-linear moment-curvature diagram

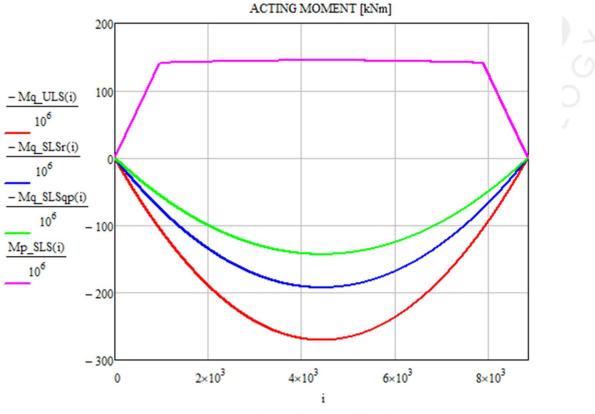
Equilibrium equations (rotation with respect to the centre of mass of the concrete section)


$$\begin{split} & \underset{i=1}{\overset{W(\varepsilon_sup,\theta)}{\underset{i=1}{\overset{Hot}{\underset{i=1}{\overset{(\sigmac(\varepsilon(y_{i},\varepsilon_sup,\theta))\cdot b(y_{i})\cdot \Delta y) + \sum_{j=1}^{jp} \left(\sigmap(\varepsilon(dp_{j},\varepsilon_sup,\theta) + \varepsilon pm_{j})\cdot Ap_{j}\right) + \sum_{j=1}^{js} \left(\sigmas(\varepsilon(ds_{j},\varepsilon_sup,\theta))\cdot As_{j}\right) \\ & \underset{i=1}{\overset{W(\varepsilon_sup,\theta)}{\underset{i=1}{\overset{(\sigmac(\varepsilon(y_{i},\varepsilon_sup,\theta))\cdot b(y_{i})\cdot \Delta y\cdot(y_{i} - yG)] + \sum_{j=1}^{jp} \left[\sigmap(\varepsilon(dp_{j},\varepsilon_sup,\theta) + \varepsilon pm_{j})\cdot Ap_{j}\cdot (dp_{j} - yG)\right] + \sum_{j=1}^{js} \left[\sigmas(\varepsilon(ds_{j},\varepsilon_sup,\theta))\cdot As_{j}\cdot (ds_{j} - yG)\right] \\ & \underset{i=1}{\overset{W(\varepsilon_sup,\theta)}{\underset{i=1}{\overset{(\sigmac)}{\underset{i=1}{\atop(\sigmac)}{\underset{i=1}{\atop(\sigmac)}{\underset{i=1}{\overset{(\sigmac)}{\underset{i=1}{\overset{(\sigmac)}{\underset{i=1}{\overset{(\sigmac$$

Design external axial load

NS := -0




Condition at final computed step (stress and strain)

5.8 Bending moment distribution

γg1 := 1.35	partial safety coefficient for self-weight structural loads
γg2 := 1.35	partial safety coefficient for non-structural certain dead loads
γ q := 1.5	partial safety coefficient for live loads or non-structural uncertain dead loads
Mq_ULS(x) := (g1-	$\frac{1}{1+g^2+q^2} + \frac{1}{q^2} + \frac{1}{q^2} + \frac{1}{q^2} + \frac{x^2}{2}$ moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q
$Mq_SLSr(x) := (g1$	$1 + g^2 + q$ $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q
Mq_SLSf(x) := (g1	$1 + g^2 + \psi 1 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q
	lpt = I
Mq_SLSqp(x) := (g	$g1 + g2 + \psi 2 \cdot q) \left(\frac{L}{2} \cdot x - \frac{x^2}{2} \right)$ moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q
Mq_SLSg2(x) := (g	$g1 + g2$) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q
$Mp_SLS(x) := if \begin{bmatrix} x \end{bmatrix}$	$< lpt, \sigma pm(x, 365 \cdot 50) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{x}{lpt}, if \left[x > L - lpt, \sigma pm(x, 365 \cdot 50) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{-x + L}{lpt}, \sigma pm(x, 365 \cdot 50) \cdot Ap_tot \cdot (Yp - Yid) \right] \right]$
	contribution of prestressing equivalent load in SLS (without modification factors)

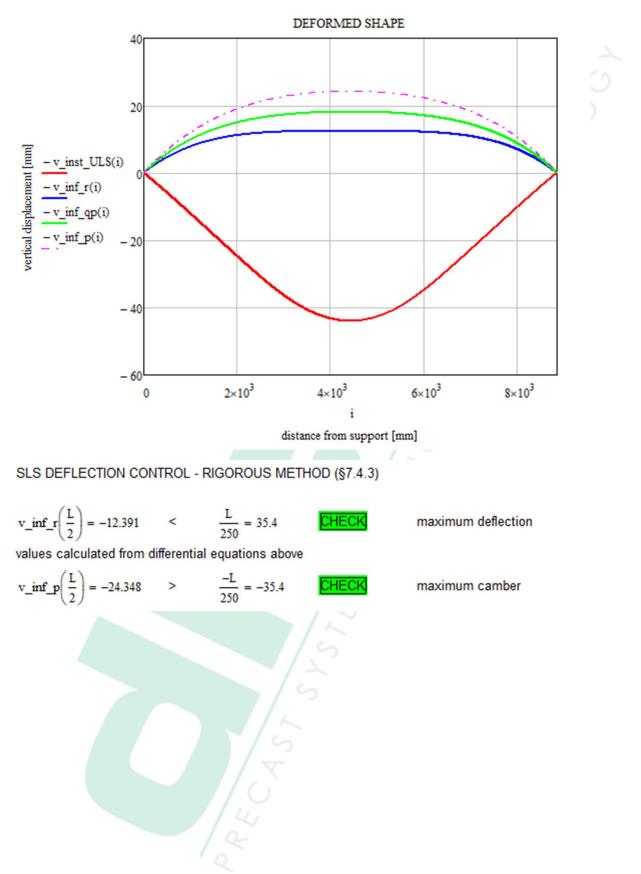
distance from support [mm]

5.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

 $v_{inf_p(x)} \coloneqq v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (1 + \varphi(365 \cdot 50, 23))$

deflection profile at 50 years including creep for permanent load combination


 $v_{inf_qp(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (1 + \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)$

deflection profile at 50 years including creep for quasi permanent load combination

 $v_inf_r(x) := v_SLSg1(x) \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSr(x)$ deflection profile at 50 years including creep for rare load combination

с

С

c

$$cnom_p := cmin_p + \Delta c_dev = 36.75 \quad mm \\ cnom_p + \frac{\varphi p}{2} = 43.1$$

k5 := 0.75

$$\sigma cpg1_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id}$$

elastic stress of bottom concrete chord for selfweight loads only

$$\sigma cpg1_top(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (-Yid)}{Ixo_id}$$

elastic stress of top concrete chord for selfweight loads only

elastic stress of top series of mild steel for selfweight loads only

$$\sigma cpf_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSf(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id}$$

elastic stress of bottom concrete chord for frequent load combination

$$\sigma cpr_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id}$$

elastic stress of bottom concrete chord for rare load combination

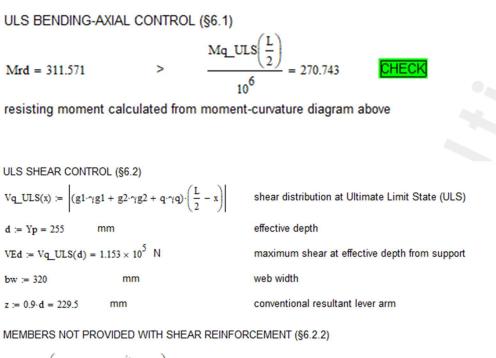
$$\sigma cpr_top(x) := \frac{-Np_tot \cdot rinf}{Aid} + \frac{[Mq_SLSr(x) - rinf \cdot Np_tot \cdot (Yp - Yid)] \cdot (-Yid)}{Ixo_tid}$$

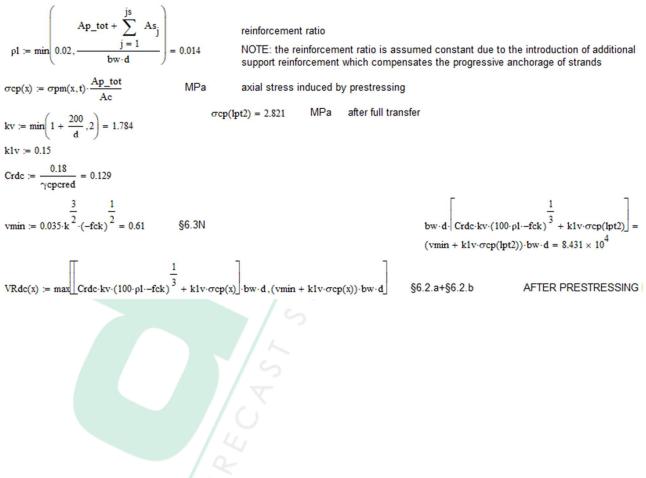
elastic stress of top concrete chord for rare load combination

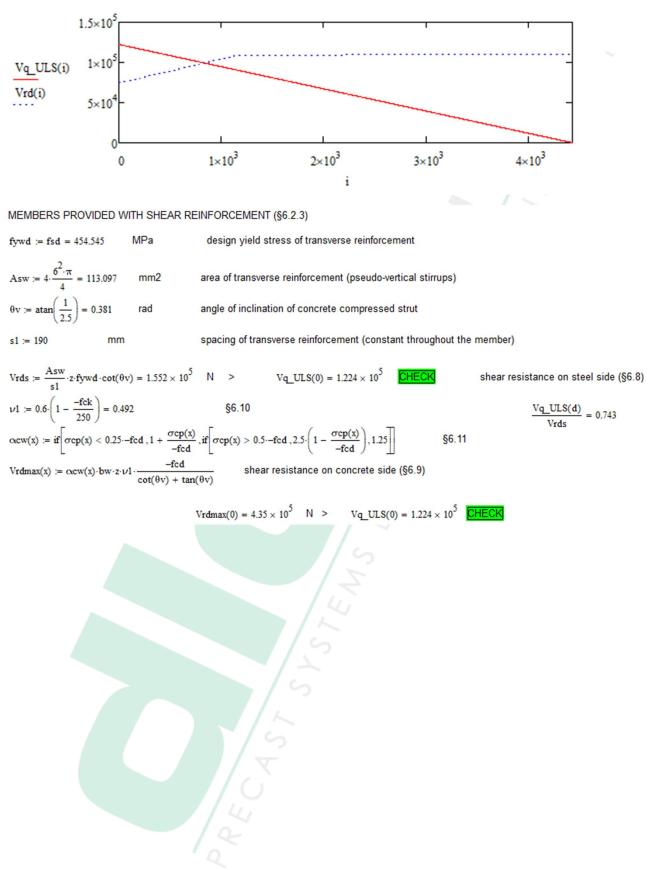
$$\sigma cpr_p(x) := \sigma pm(x,t) \cdot rsup + 15 \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (dp_{jp} - Yid)}{Ixo_id} \right] \quad continue for the stress of bottom prestressing steel for rare load combination
$$\left[Np_tot rsup - [Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (ds_{in} - Yid) \right]$$$$

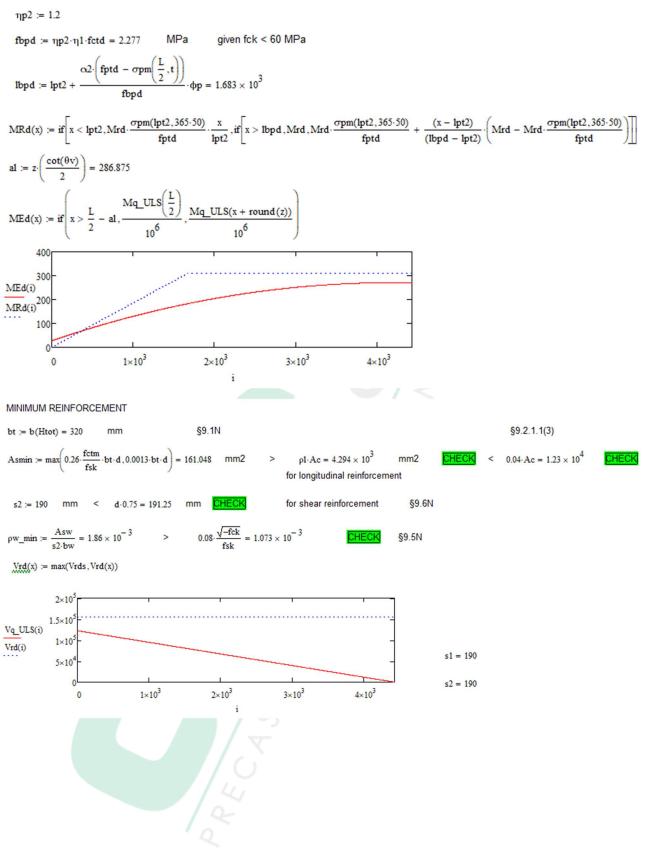
$$\sigma cpr_s(x) := 15 \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{INd_sLSI(x) - Isup \cdot Np_tot \cdot (Tp - Ind)J \cdot (ds_{js} - Ind)}{Ixo_id} \right]$$

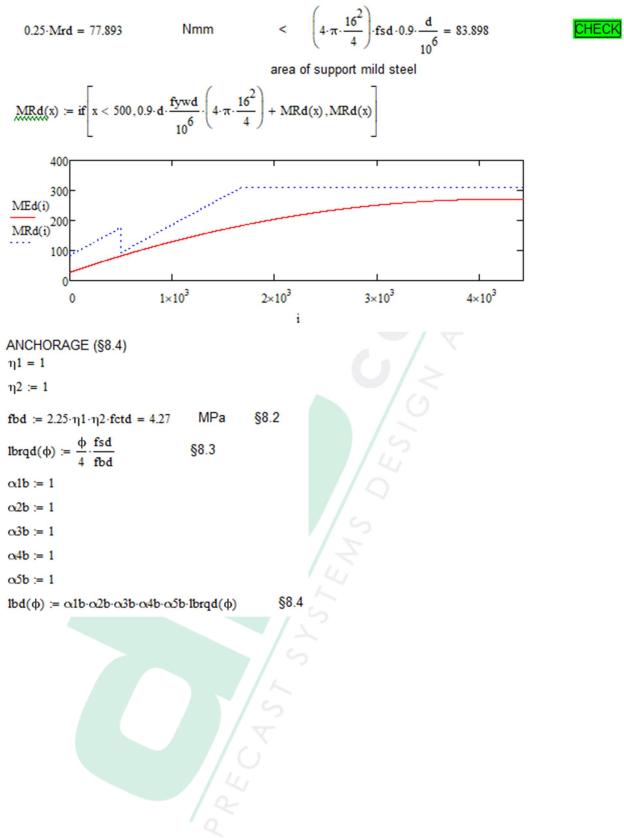
creep stress of bottom mild steel for rare load combination

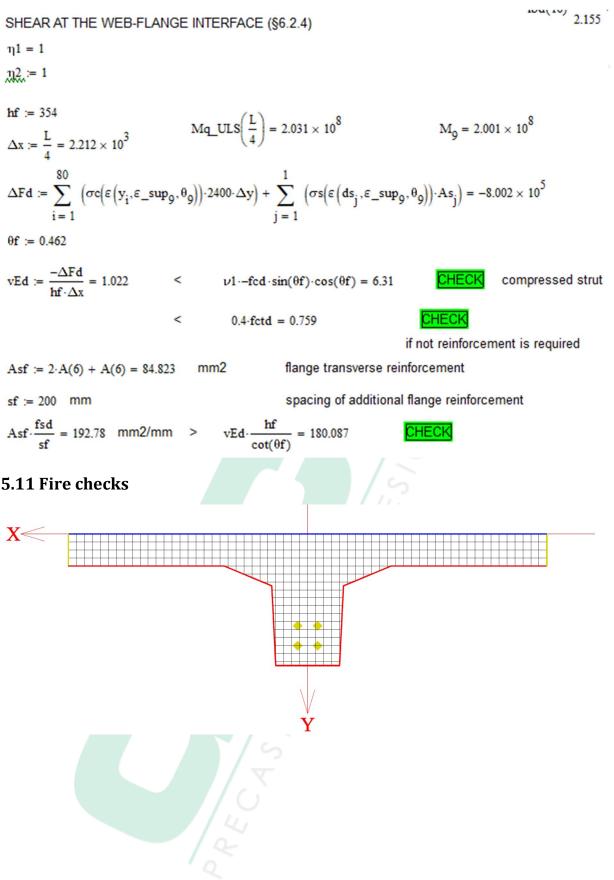



$\sigma cpg1_bot(lpt1) = -20.042$		$k1 \cdot (fcmj(2) + 8) = -13.578$ CHECK $k2 \cdot fck = -20.25$ MPa not compulsory in environment XC	
$\sigma cpg1_top(lpt1) = 2.911$	< if not	fctmj(2) = 2.193 MPa CHECK the element is assumed to be cracked after transfer of prestressing	
$\sigma cpg1_tops(lpt1) = 6.461$	<	k3·fsk = 400 MPa	
$\sigma cpf_bot\left(\frac{L}{2}\right) = -5.711$	<	fctm = 3.795 MPa CHECK	
$\sigma \operatorname{cpr_bot}\left(\frac{L}{2}\right) = -1.929$	<	fctm = 3.795 MPa	
(2) $\sigma cpr_bot(lpt1) = -16.036$		$k1 \cdot fck = -27$ MPa CHECK	
$\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -4.482$	>	$0.4 \cdot fcm = -21.2$ MPa k1 \cdot fck = -27 CHECK $0.4 \cdot fcm = -21.2$	
$\sigma \operatorname{cpr_p}\left(\frac{L}{2}\right) = 1.219 \times 10^3$	<	$k5 \cdot fptk = 1.395 \times 10^3$ CHECK	
$\sigma \operatorname{cpr}_{s}\left(\frac{L}{2}\right) = -31.91$	<	k3·fsk = 400	
SLS CRACK CONTROL (§7.3)			
$c_{act} := Htot - ds_{js} - 10 = 20$	`		
ksurf := min $\left(1.5, \frac{c_act}{10 + cmin_dur_{-}}\right)$	$\left(\frac{1}{s}\right) = 1$		
wlim_cal := 0.2	mm		
w_freq := 0 < wlim_cal	1 = 0.2	CHECK	

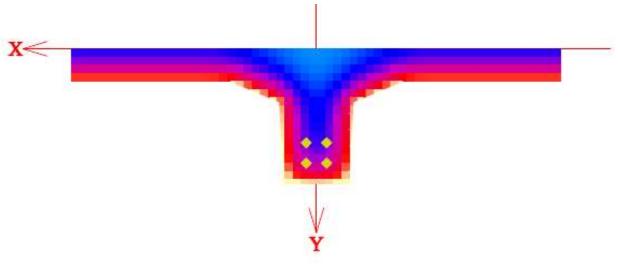

5.10 ULS checks



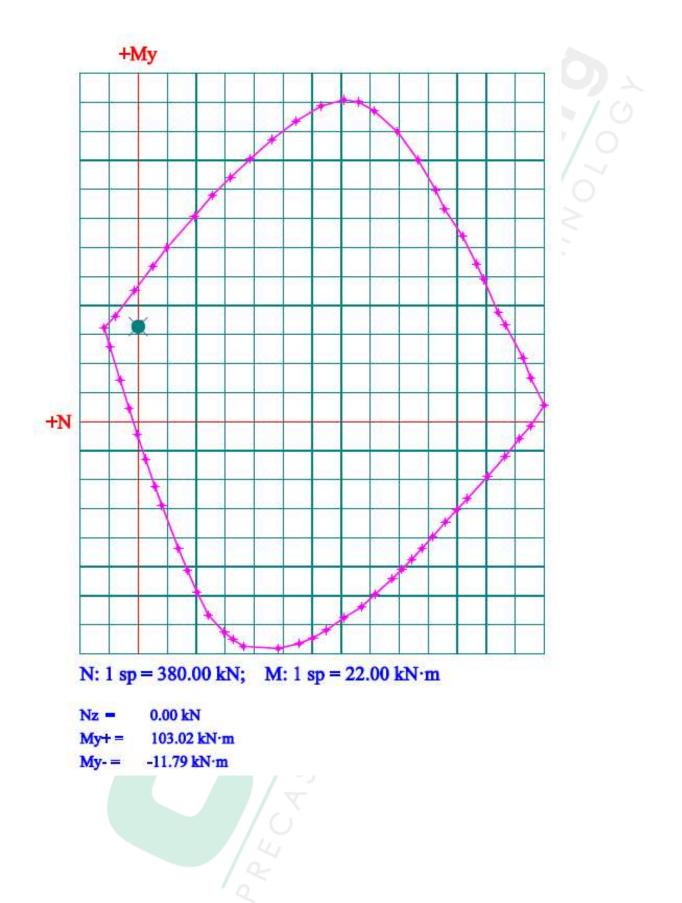

MOMENT DIAGRAM ACCOUNTING DUE TO SHEAR RESISTING MECHANISM (§9.2.1.3)



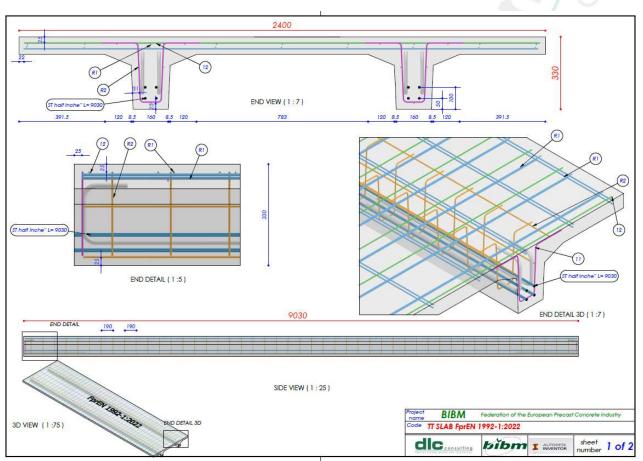
CHECK OF SUPPORT MILD REBARS (§9.2.1.4(1))



1000 °C	900 °C	800 °C	700 °C	000 °C	500 °C	400 °C	300 °C	200 °C	100 °C	0 °C



			-			-	1			1	1.00			
2	29	29	32	37	44	53	64	76	87	100	100	115	131	141
7	33	33	37	44	55	68	83	100	109	149	177	199	216	226
7	41	41	47	59	76	99	119	163	204	252	302	347	375	388
2	52	52	62	80	100	160	213		347			623	668	682
1	67	67	81	100	178	265	361	468	585	710	8048	12		
00	84	84	100		277	439		-	840	10				
32	99	99	132	226	404	730	59							
59	100	100	159	100	100000	100								
77	100	100	177	300	525	104								
90	119	119	190	319	5518	20								
)5	138	138	205	336	5738	33								
27	165	165	227	357	59 3	47								
52	205	205	262	389	6248	62								
21	269	269	321	439	663	9								
22	377	377	422	525	719	9								
		8				-								
	567	567	598	669	804	12								



6 TT element – FprEN1992-1:2022

6.1 Shop drawings

Thumbnail	Part Number	QTY	Mass	Total mass	Ø_	Ø_longitudinal	pattern_T	Ø_transverse	pattern_L		
V	11	4	208	832	6 mm						10.00
/	12	24	522	12528	6 mm						
/	21	8	2026	16208	16 mm						
	Total mass rebars	[kg]		29,57	Ir	ncidence kg/m³	11,33				
	R1	2	41610	83220		6 mm	200 mm	6 mm	300 mm		
/	R2	2	18683	37366		6 mm	200 mm	6 mm	190 mm		
otal mass	welded-wire-meshes	[kg]		120,59	lr	ncidence kg/m³	46,20				
	ST half inche" L= 9030	8	6599	52792	12,7 mm						
	Total mass strands	[kg]		52,792	Ir	n <mark>cidence kg/m³</mark>	20,23				
	Total mass of steel	[kg]		202,95		Total concrete	volume [r	2,61			
									nume	BM Federation of th FprEN 1992-1:2022	e European Precas
									dlc.		

6.2 Definition of concrete and reinforcement geometry

GEOMETRY

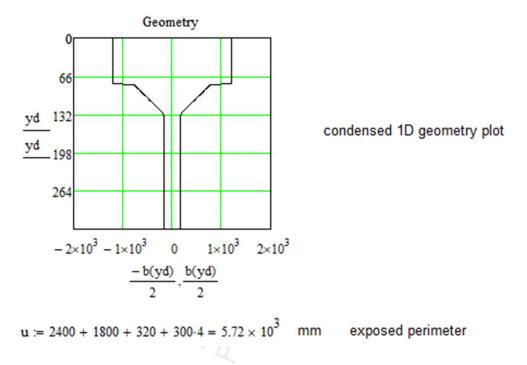
Concrete

Depth from upper chord

 $y_tr := (0 \ 79.99 \ 80 \ 130 \ 330)^T$

Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars


Width of corresponding chord:

$$b_{tr} := (2400 \ 2400 \ 1566 \ 354 \ 320)^{T}$$

r_circ := 0 radius of central void pipe

$$\begin{aligned} x_circ(y) &:= 2 \sqrt{r_circ^2 - \left(y - \frac{Htot}{2}\right)^2} \\ b_lin(y) &:= linterp(y_tr, b_tr, y) \\ b_circ(y) &:= linterp(y_tr, b_tr, y) - x_circ(y) \\ b(y) &:= if \left[y \le \left(\frac{Htot}{2} + r_circ\right) \land y \ge \frac{Htot}{2} - r_circ, b_circ(y), b_lin(y) \right] \end{aligned}$$

yd := 0.. Htot

Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (25 \ 300)^T$

Area of reinforcement at each depth

$$As := (12 \cdot A(6) 2 \cdot A(6))^T$$

js := rows(As) js = 2

dsmax := max(ds) dsmax = 300

$$As_{tot} := \sum_{j=1}^{J^{s}} As_{j} = 395.841$$

Prestressing reinforcement

nominal strand diameter Area of a single strand: 12.7 mm 0.5' nominal strand diameter Ap0 := 93 $\phi p := 12.7$ mm 15.24 mm 0.6' Depth of prestressing strands from upper chord: $dp := (180 \ 230 \ 280)^T$ Area of strands at each depth: $Ap := (0 \cdot Ap0 \quad 4 \cdot Ap0 \quad 4 \cdot Ap0)^T$ MPa σp0 := 1400 $\sigma prec := (0.4 \cdot \sigma p0 \sigma p0)^T$ initial prestressing perdite := $0 \cdot (1 \ 1 \ 1)^{T}$ in percentual % (losses are introduced later) jp := rows(Ap) jp = 3k := 1.. jp $\sigma_{\mathbf{v}_{k}} \coloneqq \sigma_{\mathbf{v}_{k}} \cdot \left[\frac{\left(100 - \text{perdite}_{k}\right)}{100} \right]$ $\sigma \mathbf{o} = \begin{pmatrix} 560\\ 1.4 \times 10^3\\ 1.4 \times 10^3 \end{pmatrix}$ $Ap_tot := \sum_{k=1}^{jp} Ap_k \qquad Ap_tot = 744$ ypmax := max(dp) ypmax = 280 $Np_tot := \sum_{k=1}^{jp} \left(\left(Ap_k \cdot \sigma o_k \right) \right)$ $Np_tot = 1.042 \times 10^6$ N total prestressing initial force $Yp := \frac{\sum_{k=1}^{Jp} \left(dp_k \cdot Ap_k \cdot \sigma o_k \right)}{\sum_{k=1}^{Jp} \left(Ap_k \cdot \sigma o_k \right)} = 255 \qquad \text{mm}$ centre of gravity of prestressing

6.3 Material constitutive laws employed in the calculation

81

6.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{Htot} b(y) dy$$

$$\rho s := \frac{As_tot}{Ac} = 1.288 \times 10^{-3}$$

$$\rho p := \frac{Ap_tot}{Ac} = 2.42 \times 10^{-3}$$

 $Ac = 3.074 \times 10^{5}$

geometric ratio for longitudinal mild reinforcement

geometric ratio for longitudinal prestressing tendons

$$\rho tot := \frac{As_tot + Ap_tot}{Ac} = 3.708 \times 10^{-3}$$
 total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} \mathbf{b}(\mathbf{y}) \cdot \mathbf{y} \, d\mathbf{y}$$
 Syc = 2.785 × 10⁷

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 90.619$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy \qquad \text{Ixo_cls} = 2.109 \times 10^9$$

Global area of all prestressing reinforcement

Area_tr :=
$$s \leftarrow 0$$
 Area_tr = 744
for $x \in 1...jp$
 $s \leftarrow Ap_x + s$

First moment of the area referred to prestressing reinforcement only

$$Sxp := \sum_{i=1}^{Jp} (Ap_i dp_i) \qquad Sxp = 1.897 \times 10^5$$

Centre of gravity of prestressing

$$Yp := \frac{Sxp}{Area_{tr}} \qquad Yp = 255$$

Idealisation coefficients (elastic)

$$np := \frac{Ep}{Ecm} \qquad np = 5.465$$
$$ns := \frac{Es}{Ecm} \qquad ns = 5.605$$

82

Area of ideal cross-section

Aid := Ac + (np - 1)
$$\cdot \sum_{j=1}^{jp} Ap_j + (ns - 1) \cdot \sum_{j=1}^{js} As_j$$
 Aid = 3.125 × 10⁵

First moment of the reinforced concrete area

$$Sxid := Ac \cdot yG + (np - 1) \cdot (Area_tr \cdot Yp) + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$

$$Sxid = 2.882 \times 10^7$$

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 92.213

Second moment of the concrete area subtracting the effect of reinforcement

$$Ixoidcls := \int_{0}^{Htot} b(y) \cdot (y - Yid)^{2} dy - \sum_{i=1}^{jp} \left[Ap_{i} \cdot \left(dp_{i} - Yid \right)^{2} \right] - \sum_{j=1}^{js} \left[As_{j} \cdot \left(ds_{j} - Yid \right)^{2} \right]$$

Second moment of the prestressing reinforcement area

Ixoidprec :=
$$np \cdot \sum_{i=1}^{jp} \left[Ap_i \cdot (dp_i - Yid)^2 \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{Js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidprec + Ixoidlenta
$$Ixo_id = 2.219 \times 10^9 \text{ mm}^4 \frac{Ixo_id}{Ixo_cls} = 1.052$$

6.5 Loads

LOADS

interaxis := 2400 mm dead load from self-weight g1 := Ac·0.000025 = 7.685 kN/m $g_2 := 2 \cdot \frac{interaxis}{1000} = 4.8$ kN/m nonstructural dead load $q := 3 \cdot \frac{\text{interaxis}}{1000} = 7.2$ kN/m live load L := 8850 mm calculation length (span between supports) ψ2 := 0.3 non-contemporaneity factor for quasi-permanent load combination ψ1 := 0.5 non-contemporaneity factor for frequent load combination Mq_SLSg1(x) := (g1) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ SLS bending moment distribution from self-weight load Mq_SLSg2(x) := (g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ SLS bending moment distribution from nonstructural dead load Mq_SLSq(x) := $(q \cdot \psi_2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ SLS bending moment distribution from live load

6.6 Prestressing transfer and time-dependent behaviour

TRANSFER OF PRESTRESS (§13.5.3)

α1 := 1	gradual relea	ise of prestressir	ıg
α2 := 0.26	for 7-wire stra	ands	
$\sigma pm0 := \sigma p0 = 1.4$	4×10^3 MF	a	
η1 := 1	n favourable p	osition	
$lpt := \frac{\gamma c}{1.5} \cdot \frac{\alpha l}{\eta l \cdot \sqrt{(-1)^2}}$	$\frac{\alpha 2 \cdot \sigma pm0}{fcmj(2) - 8} \cdot d$	bp = 906.996	mm b
1pt1 := 0.81pt = 72	5.597	mm	lo
lpt2 := 1.2·lpt = 1.	088×10^{3}	mm	u

basic value of the transmission length following §(13.4)

lower-bound transfer length following §(13.6)

upper-bound transfer length following §(13.7)

Prestress losses

$$hn := 2 \cdot \frac{Ac}{u} = 107.477 \quad mm$$

$$A_{\text{c}} := 0.79 + \frac{(hn - 200)}{(500 - 200)} \cdot (0.75 - 0.79) = 0.802$$

$$\varepsilon cs := \frac{0.65}{1000} = 6.5 \times 10^{-4} \quad \text{shrinkage strip}$$

shrinkage strain assumed as a result of laboratory tests on the specific concrete mix employed

 $\rho 1000 := 0.025$

for class 2 (low-relaxation) tendons

kρ := 0.16

 $t := 50.365 = 1.825 \times 10^4$ days Life span

$$\sigma cpQP2(x) := \frac{-Np_tot}{Aid} + \frac{[Mq_SLSg1(x) - Np_tot \cdot (Yp - Yid)] \cdot (Yp - Yid)}{Ixo_id} \qquad \sigma cpQP2\left(\frac{L}{2}\right) = -10.254$$

stress in quasi-permanent load combination at 2 days (conventional equivalent time for prestressing release)

$$\sigma cpQP23(x) := \frac{Mq_SLSg2(x) \cdot (Yp - Yid)}{Ixo_id}$$

$$\sigma cpQP23\left(\frac{L}{2}\right) = 3.448$$

stress in quasi-permanent load combination at 23 days (conventional time for assemblage of the structure on site)

$$\sigma cpQP91(x) := \frac{Mq_SLSq(x) \cdot (Yp - Yid)}{Ixo id}$$

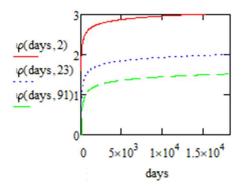
$$\sigma cpQP91\left(\frac{L}{2}\right) = 1.552$$

stress in quasi-permanent load combination at 91 days (conventional time for enter in use of the structure)

$$\Delta \sigma pr(x,t) := \left[\sigma p0 + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) \right] \cdot \rho 1000 \cdot \left(\frac{24 \cdot t}{1000} \right)^{k\rho}$$

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

RH := 50 $t0_adj(t0) := t0$ $\beta bc_fcm := \frac{1.8}{(-fcm)^{0.7}} = 0.112$ $\beta bc_t_t0(t,t0) := ln \left[\left(\frac{30}{t0_adj(t0)} + 0.035 \right)^2 \cdot (t-t0) + 1 \right]$ $\beta dc_fcm := \frac{412}{(-fcm)^{1.4}} = 1.588$ $\beta dc_RH := \frac{1 - \frac{RH}{100}}{\sqrt[3]{0.1 \cdot \frac{hn}{100}}} = 1.052$ $\beta dc_t0(t0) := \frac{1}{0.1 + t0_adj(t0)^{0.2}}$ $\gamma(t0) := \frac{1}{2.3 + \frac{3.5}{\sqrt{t0_adj(t0)}}}$


$$\alpha \text{cm} := \left(\frac{35}{-\text{fcm}}\right)^{0.5} = 0.813$$

 $\beta h := min(1.5 \cdot hn + 250 \cdot \alpha cm, 1500 \cdot \alpha cm) = 364.374$

$$\beta dc_t_{0}(t, t0) := \left[\frac{(t-t0)}{\beta h + (t-t0)}\right]^{\gamma(t0)}$$

$$\begin{split} \phi dc(t,t0) &:= \beta dc_fcm \cdot \beta dc_RH \cdot \beta dc_t0(t0) \cdot \beta dc_t_t0(t,t0) \\ \phi bc(t,t0) &:= \beta bc_fcm \cdot \beta bc_t_t0(t,t0) \\ \phi(t,t0) &:= \phi bc(t,t0) + \phi dc(t,t0) \end{split}$$

 $\varphi(t,2) = 3.034$

TIME-DEPENDENT LOSSES OF PRESTRESS (§7.6.4)

$$\Delta \sigma p_csr(x,t) := \frac{-\varepsilon cs \cdot Ep - 0.8 \cdot \Delta \sigma pr(x,t) + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) \cdot \varphi(t,2) + \sigma cpQP23(x) \cdot \varphi(t,23) + \sigma cpQP91(x) \cdot \varphi(t,91))}{1 + \frac{Ep}{Ecm} \cdot \frac{Ap_tot}{Ac} \cdot \left[1 + \frac{Ac}{Ixoidcls} \cdot (Yp - Yid)^2\right] \cdot \left(1 + 0.8 \cdot \frac{\varphi(t,2) \cdot \sigma cpQP2(x) + \varphi(t,23) \cdot \sigma cpQP23(x) + \varphi(t,91) \cdot \sigma cpQP91(x)}{\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)}\right)}$$

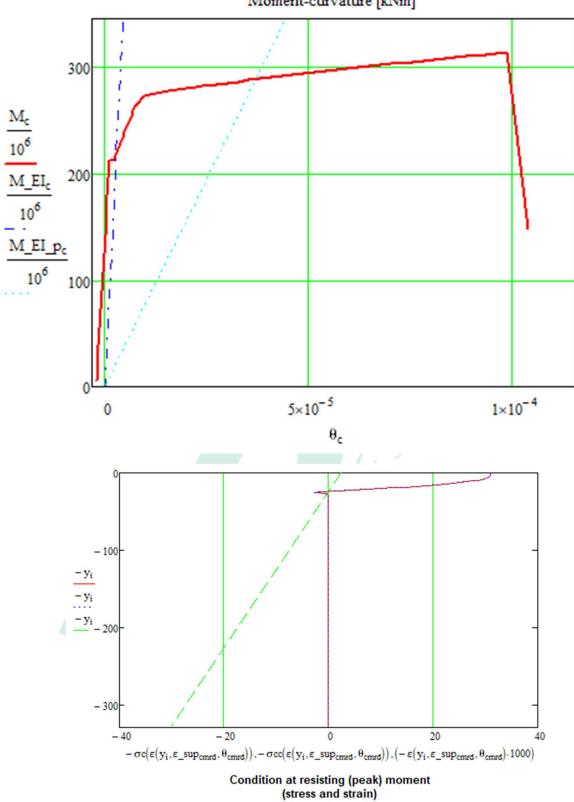
$$prestress losses following §(7.35)$$

NOTE: a weighed creep coefficient was considered accounting for the 3 load phases previously introduced

 $\sigma pm(x,t) := \sigma p0 - \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) + \Delta \sigma p_csr(x,t)$ prestress considering immediate and delayed losses $\frac{\sigma pm\left(\frac{L}{2}, 365 \cdot 50\right)}{\sigma p0} = 0.843$ expected residual prestress ratio after 50 years of life with respect to initial $\varepsilon pm := \frac{\sigma pm\left(\frac{L}{2}, 365 \cdot 50\right)}{\sigma p0} \cdot \varepsilon p0$ expected residual strain after 50 years of life with respect to initial $\sigma pm\left(\frac{L}{2}, 365 \cdot 50\right) \cdot Ap_tot = 8.778 \times 10^{5}$ N residual prestress force after 50 years of life Np_tot = 1 N initial prestress force

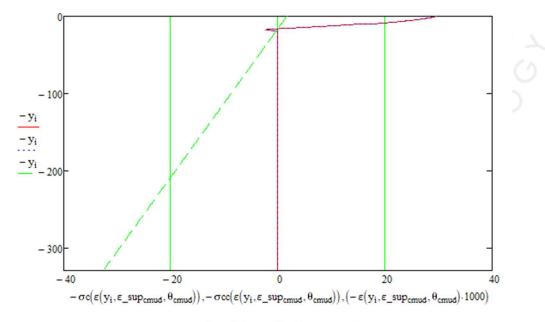
6.7 Non-linear moment-curvature diagram

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)


$$\begin{split} & \underset{i=1}{\overset{\mathsf{M}(\varepsilon_sup,\theta)}{\longrightarrow}} \coloneqq \sum_{i=1}^{Htot} \left(\sigma c \big(\varepsilon \big(y_i, \varepsilon_sup, \theta \big) \big) \cdot b \big(y_i \big) \cdot \Delta y \big) + \sum_{j=1}^{jp} \left(\sigma p \big(\varepsilon \big(dp_j, \varepsilon_sup, \theta \big) + \varepsilon pm_j \big) \cdot Ap_j \big) + \sum_{j=1}^{js} \left(\sigma s \big(\varepsilon \big(ds_j, \varepsilon_sup, \theta \big) \big) \cdot As_j \big) \right) \\ & \underset{i=1}{\overset{\mathsf{H}(\varepsilon_sup,\theta)}{\longrightarrow}} \coloneqq \sum_{i=1}^{Htot} \left[\sigma c \big(\varepsilon \big(y_i, \varepsilon_sup, \theta \big) \big) \cdot b \big(y_i \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] + \sum_{j=1}^{jp} \left[\sigma p \big(\varepsilon \big(dp_j, \varepsilon_sup, \theta \big) + \varepsilon pm_j \big) \cdot Ap_j \cdot \big(dp_j - yG \big) \right] + \sum_{j=1}^{js} \left[\sigma s \big(\varepsilon \big(ds_j, \varepsilon_sup, \theta \big) \big) \cdot As_j \cdot \big(ds_j - yG \big) \right] \right] \end{split}$$

Design external axial load

NS := -0

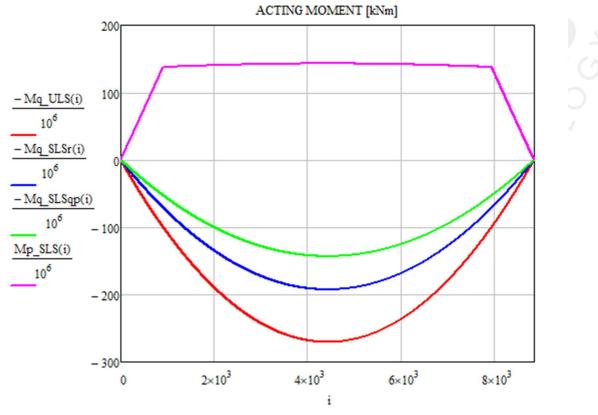


Moment-curvature [kNm]

Condition at final computed step (stress and strain)

6.8 Bending moment distribution

γg1 := 1.35	partial safety coefficient for self-w	reight structural loads							
γg2 := 1.35	partial safety coefficient for non-structural certain dead loads								
γ q := 1.5	partial safety coefficient for live loads or non-structural uncertain dead loads								
$Mq_ULS(x) := (g1 \cdot f)$ $Mg_SLSr(x) := (g1$	$ \begin{array}{l} \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2} \right) \\ + g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2} \right) \end{array} $	moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q							
		lpt = 906.996							
$Mq_SLSf(x) := (g1$	$+ g^2 + \psi^1 \cdot q \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q							
	(- 2)								


 $Mq_SLSqp(x) := (g1 + g2 + \psi2 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q $Mq_SLSgp(x) := (g1 + g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q

 $Mp_SLS(x) := if \left[x < lpt, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{x}{lpt}, if \left[x > L - lpt, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{-x + L}{lpt}, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \right] \right]$

contribution of prestressing equivalent load in SLS (without modification factors)

distance from support [mm]

6.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

$$v_{inf_{p}(x)} = \frac{v_{inf_{p}(x)}}{1.65}$$
deflection profile at 50 years including creep for permanent load combination
$$v_{inf_{q}(p_{i})} = \frac{v_{inf_{q}(p_{i})}}{1.65} \frac{v_{inf_{q}(p_{i})} + v_{inf_{q}(p_{i})}}{1.65} \frac{v_{inf_{q}(p_{i})} + v_{inf_{q}(p_{i})} + v_{inf_{q}(p_{i})} \frac{v_{inf_{q}(p_{i})} + v_{inf_{q}(p_{i})} \frac{v_{inf_{q}(p_{i})$$

SLS STRESS CONTROL (§9.2.1)

$$\begin{aligned} \text{k1} &= 0.6 \qquad \text{rsup} := 1.05 \\ \text{k1} &= 0.6 \qquad \text{rsup} := 1.05 \\ \text{k2} &= 0.45 \qquad \text{prestressing modification coefficients} \\ \text{k3} &= 0.8 \qquad \text{inf} := 0.95 \qquad \text{Np_tot} = 1.042 \times 10^6 \\ \text{k4} &= 1 \\ \text{k5} &= 0.8 \qquad 0.75 \text{ in EN1992-1-1:2002} \\ \end{aligned}$$

$$\begin{aligned} \text{NOTE: the denomination of the allowable stress coefficients following k factors was kept similar to that of EN1992-1-1:2002 \\ \texttt{acpg1_bot}(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSg1(x) - rsup:Np_tot:(Yp - Yid)]\cdot(Htot - Yid)}{Iso_jd} \qquad \text{acpg1_bot}(x) = \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSg1(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpg1_top}(\text{pt}) = : \\ \texttt{elastic stress of bottom concrete chord for selfweight loads only} \\ \texttt{acpg1_tops}(x) &= \frac{Is_x}{Em} \left[\frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSg1(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpg1_top}(\text{pt}) = : \\ \texttt{elastic stress of top concrete chord for selfweight loads only} \\ \texttt{acpg1_tops}(x) &= \frac{Is_x}{Em} \left[\frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSg1(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpg1_tops}(\text{pt}) = \\ \texttt{elastic stress of top series of mild steel for selfweight loads only} \\ \texttt{acpf_bot}(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSf(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpf_bot}(\frac{1}{2}) = -5. \\ \texttt{elastic stress of bottom concrete chord for rate load combination} \\ \texttt{acpr_bot}(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSf(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpr_bot}(\frac{1}{2}) = -1. \\ \texttt{acpr_top}(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSr(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpr_bot}(\frac{1}{2}) = -1. \\ \texttt{acpr_top}(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSr(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jd} \qquad \text{acpr_top}(\frac{1}{2}) = -4. \\ \texttt{elastic stress of top concrete chord for rare load combination} \\ \texttt{acpr_top}(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_sSLSr(x) - rsup:Np_tot:(Yp - Yid)]\cdot(-Yid)}{Iso_jid} \qquad \text{acpr_top}(\frac{1}{2}) = -4. \\ \texttt{elastic stress of bottom prestressing steel for rare load combination} \\ \texttt{acpr_top}(\frac{1}{x}) &= rsin_j (\frac{Np_s}{Aid} + \frac{(Mq_sSLSr(x) - rsup:N$$

creep stress of bottom mild steel for rare load combination

92

LN1352-1-1.2002		2
σcpg1_bot(lpt1) = -20.153		$\frac{2}{3} \cdot fck = -18.733$ CHECK
	>	k2·fck = -20.25 not compulsory in environment XC
$\sigma cpg1_top(lpt1) = 2.959$	<	fctmj(2) = 2.731
$\sigma cpg1_tops(lpt1) = 6.77$	<	$k3 \cdot fsk = 400$
$\sigma cpf_bot\left(\frac{L}{2}\right) = -5.703$	<	fctm = 3.795
$\left(\frac{1}{2}\right)^{-1} = -5.005$		icuit = 5.755
$\sigma cpr_bot\left(\frac{L}{2}\right) = -1.926$	<	fctm = 3.795
Scpr_{2} = -1.920		
$\sigma cpr_bot(lpt1) = -16.362$	>	$k1 \cdot fck = -27$ CHECK
(L) (181		$0.4 \cdot fcm = -21.2$ k1 · fck = -27
$\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -4.481$	>	$k1 \cdot fck = -27$ CHECK 0.4 \cdot fcm = -21.2
	-	0.4-rcm = -21.2
$\sigma \operatorname{cpr_p}\left(\frac{L}{2}\right) = 1.205 \times 10^3$	<	$k5 \cdot fptk = 1.488 \times 10^3$ CHECK
- (2)		·
(L)		
$\sigma \operatorname{cpr}_{s}\left(\frac{L}{2}\right) = -31.868$	<	k3·fsk = 400
SLS CRACK CONTROL (§9.2.3)	
$c_act := Htot - ds_{js} - 10 = 20$		
ksurf := min $\left(1.5, \frac{c_act}{10 + cmin dur}\right)$	-) = 1	
(10 + cmin_dur_	s)	
wlim_cal := 0.2 ksurf = 0.2	mm	
w_freq := 0 < wlim_cal	= 0.2	CHECK

6.10 ULS checks

ULS BENDING-AXIAL CONTROL (§8.1)	
$Mrd = 313.6 \text{ kNm} > \frac{Mq_ULS\left(\frac{L}{2}\right)}{10^6}$	= 270.743 CHECK
resisting moment calculated from moment-curvatu	ire diagram above
ULS SHEAR CONTROL (§8.2)	
$Vq_ULS(x) := \left (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} - x\right) \right $	shear action distribution at Ultimate Limit State (ULS)
d := Yp = 255 mm	effective depth of cross-section
$VEd := Vq_ULS(d) = 1.153 \times 10^5 N$	design shear action at control section at distance d from support
$\gamma v := 1.3$	safety factor for initial shear check
bw := 320 mm	design web width
$z := 0.9 \cdot d = 229.5$	conventional lever arm of internal stress resultants
$\tau Ed := \frac{VEd}{bw \cdot z} = 1.57$ MPa	equivalent mean acting shear stress on control cross-section
Dlower := 16 mm	maximum aggregate diameter following assumed mix design
ddg := min $\left[if \left[-fck > 60, 16 + Dlower \cdot \left(\frac{60}{-fck} \right)^2, 16 + Dlower \cdot \left(\frac{60}{-fck} \right)^2 \right]$	ver, 40 = 32 size parameter

MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT (§8.2.2)

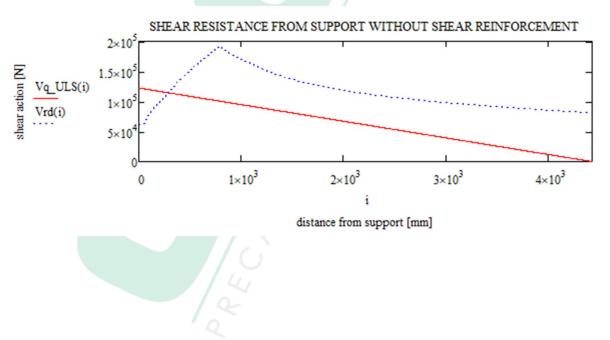
$$\tau Rdc_{min}(x) := \frac{11}{\gamma v} \cdot \sqrt{\frac{-fck}{(fptd - \sigma pm(x,t))} \cdot \frac{ddg}{d}}$$
 §(8.20)

$$\tau Rdc_min(d) = 0.841$$

not checked with TEd -> detailed evaluation is mandatory following §8.2.1

longitudinal geometric reinforcement ratio §(8.28)

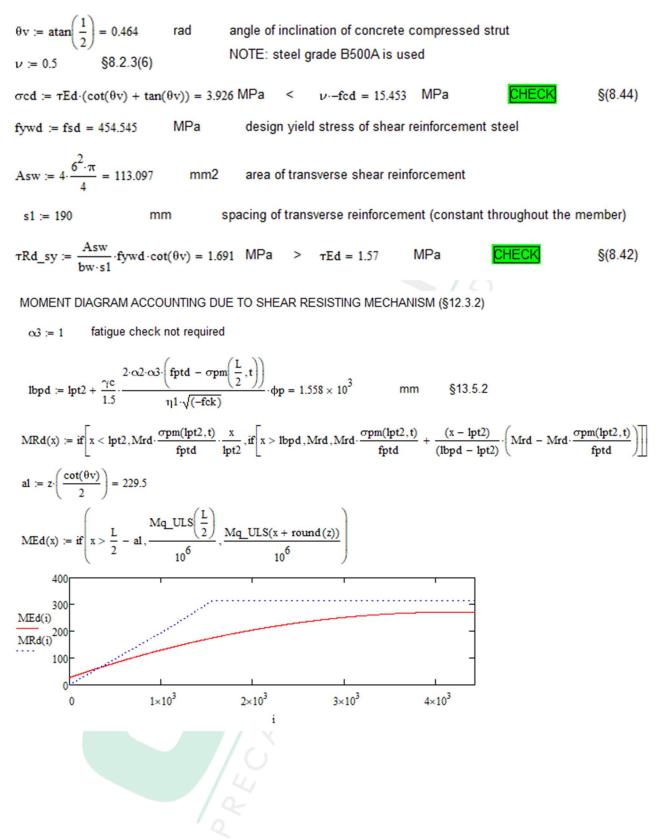
 $\rho l(x) \coloneqq if\left(x < lpt2, \frac{Ap_tot}{bw \cdot d} \cdot \frac{x}{lpt2}, if\left(x > L - lpt2, \frac{Ap_tot}{bw \cdot d} \cdot \frac{-x + L}{lpt2}, \frac{Ap_tot}{bw \cdot d}\right)\right)$ ep := Yp - Yid = 162.787 mm eccentricity of prestressing


 $acs_0(x) := max \left(\frac{Mq_ULS(x)}{Vq_ULS(x)}, d \right)$ §(8.30) accounting for comments in §8.2.2(5) $\underset{\text{kl}(x)}{\text{kl}(x)} := \min \left[\frac{0.5}{\text{acs}_0(x)} \cdot \left(ep + \frac{d}{3} \right) \cdot \frac{Ac}{bw \cdot z}, 0.18 \cdot \frac{Ac}{bw \cdot z} \right]$

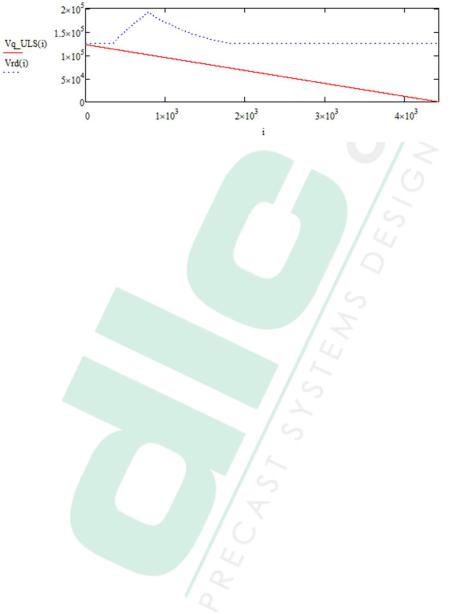
$$\lim_{x \to \infty} |x| := \min \left[\frac{1}{\operatorname{acs}_{0}(x)} \cdot \left(\operatorname{ep}_{x} + \frac{1}{3} \right) \cdot \frac{1}{\operatorname{bw} \cdot z}, 0.18 \cdot \frac{1}{\operatorname{bw} \cdot z} \right]$$
$$\operatorname{av}_{0}(x) := \sqrt{\frac{\operatorname{acs}_{0}(x)}{4} \cdot \mathbf{d}}$$

§(8.29) accounting for comments in §8.2.2(5)

§(8.32) $\tau Rdc(x) := max(min(\tau Rdc_0(x) + k1(x) \cdot \sigma cp(x), \tau Rdcmax(x)), \tau Rdc_min(x))$

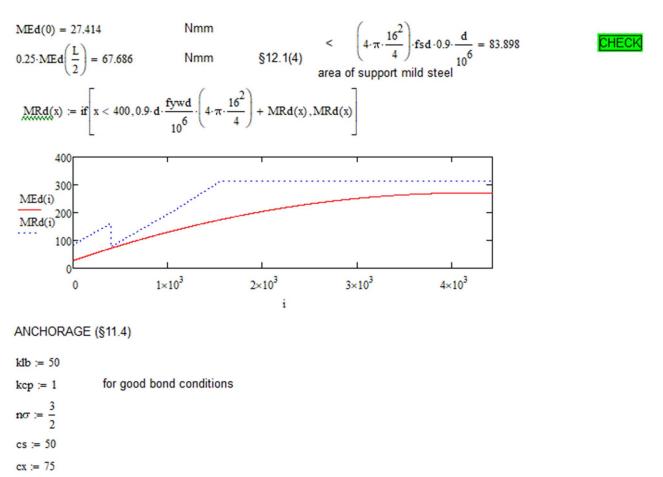

 $Vrd(x) := bw \cdot z \cdot \tau Rdc(x)$

MEMBERS PROVIDED WITH SHEAR REINFORCEMENT (§8.2.3)



MINIMUM REINFORCEMENT (§12.2)

 $kh := if[0.8 - 0.6 \cdot (min(bw, Htot) - 0.3) < 0.5, 0.5, if[0.8 - 0.6 \cdot (min(bw, Htot) - 0.3) > 0.8, 0.8, 0.8, -0.6 \cdot (min(bw, Htot) - 0.3)]] = 0.5$ §9.2.2(2) fct_eff := fctm $As_min_w1 := 0.2 \cdot kh \cdot fct_eff \cdot \frac{Ac}{fsk} = 233.331 mm2 \qquad Ap_tot + As_tot - As_1 = 800.549$ mm2 §(9.2) CHECK $\operatorname{rsup} \cdot \operatorname{Np_tot} \cdot \frac{(\operatorname{Yp} - \operatorname{Yid})}{10^6} + \left(\operatorname{fctm} + \frac{\operatorname{Np_tot} \cdot \operatorname{rsup}}{\operatorname{Aid}}\right) \cdot \frac{\operatorname{Ixo_id}}{(\operatorname{Htot} - \operatorname{Yid}) \cdot 10^6} = 246.102 \qquad \leq \qquad \operatorname{Mrd} = 313.6$ kNm §(12.1) CHECK CHECK s2 := 190 < 0.75·d = 191.25 §12.1 $\rho w_min := \frac{Asw}{s2 \cdot bw} = 1.86 \times 10^{-3} > 0.08 \cdot \frac{\sqrt{-fck}}{fsk} = 1.073 \times 10^{-3}$ CHECK §(12.4)


 $Vrd(x) := max(\tau Rd_sy \cdot bw \cdot z, Vrd(x))$

CHECK OF SUPPORT MILD REBARS

$$cv = 40$$

 $cd(\phi) := min(0.5 \cdot cs, cx, cy, 3.75 \cdot \phi)$ cd(12) = 25

$$1bd(\phi) := \max\left[klb \cdot kcp \cdot \phi \cdot \left(\frac{fsd}{435}\right)^{n\sigma} \cdot \left(\frac{25}{-fck}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1.5 \cdot \phi}{cd(\phi)}\right)^{\frac{1}{2}}, 10 \cdot \phi\right]$$

1bd(16) = 579.319

$$\frac{16d(12)}{12} = 28.489$$

length of straight part for 90° bent bars

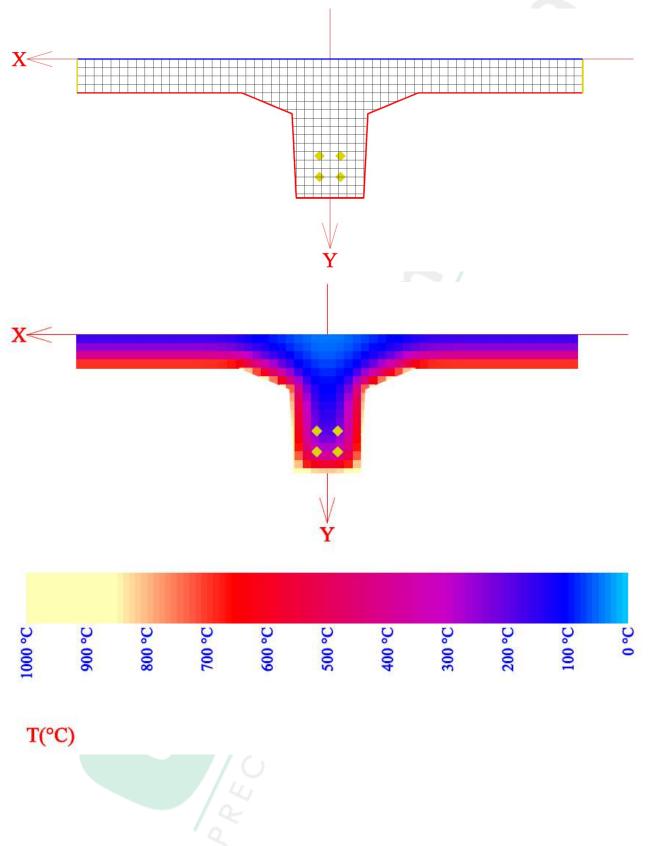
 $1b90(\phi) := max(70, 1bd(\phi) - 15 \cdot \phi, 10 \cdot \phi)$

1b90(12) = 161.872 1b90(16) = 339.319

length of straight part for 135° bent bars (stirrups)

 $lb135(\phi) := max(50, lbd(\phi) - 15 \cdot \phi, 5 \cdot \phi)$

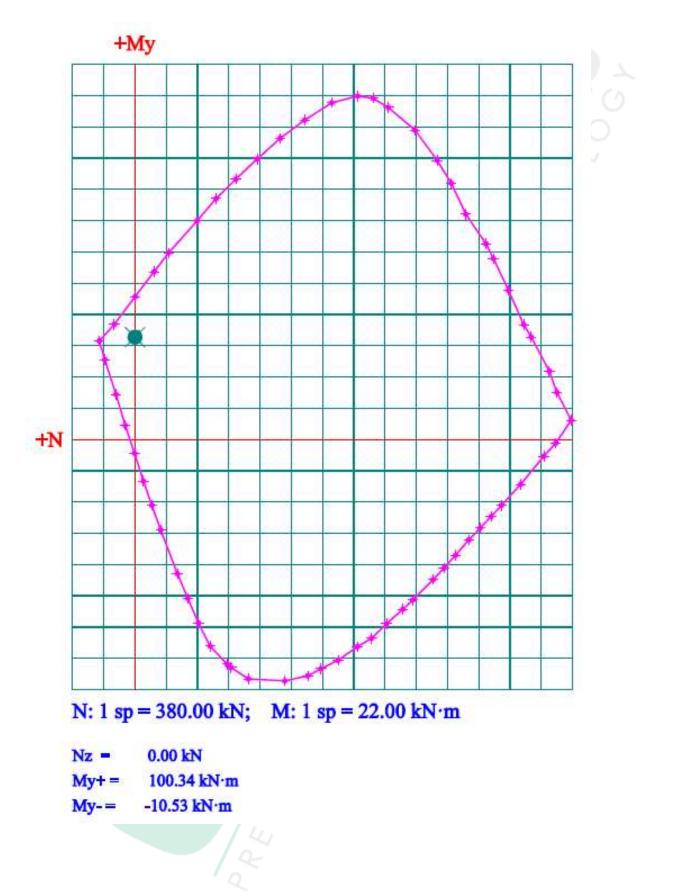
1b135(12) = 161.872 1b135(8) = 50


SHEAR AT THE WEB-FLANGE INTERFACE (§8.2.5)

$$\begin{aligned} \mathbf{h}\mathbf{f} &= 354 \\ \Delta \mathbf{x} &:= \frac{1}{4} = 2.212 \times 10^3 \\ \Delta \mathbf{f}\mathbf{d} &:= \sum_{i=1}^{80} \left(\operatorname{crc} \left(\mathbf{c} \left(\mathbf{y}_i, \mathbf{c}_{-\mathbf{s}} \mathbf{u} \mathbf{p}_{7}, \mathbf{0}_{7} \right) \right) 2400 \ \Delta \mathbf{y} \right) + \sum_{j=1}^{1} \left(\operatorname{crs} \left(\mathbf{c} \left(\mathbf{d} \mathbf{s}_j, \mathbf{c}_{-\mathbf{s}} \mathbf{u} \mathbf{p}_{7}, \mathbf{0}_{7} \right) \right) \mathbf{A} \mathbf{s}_j \right) = -8.64 \times 10^5 \\ \mathbf{0}\mathbf{f} &:= 0.462 \\ \mathbf{T}\mathbf{E} \mathbf{d} \mathbf{1}_{\mathbf{w}} \mathbf{v} &:= \frac{-\Delta \mathbf{F} \mathbf{d}}{\mathbf{I} \mathbf{f} \cdot \Delta \mathbf{x}} = 1.103 \\ \operatorname{crcd} \mathbf{1}_{\mathbf{w}} \mathbf{v} &:= \mathbf{T} \mathbf{E} \mathbf{d} \mathbf{1}_{\mathbf{w}} \mathbf{v} \left(\cot(\mathbf{0}\mathbf{f}) + \tan(\mathbf{0}\mathbf{f}) \right) = 2.765 \\ \mathbf{v} \cdot -\mathbf{f} \mathbf{d} &= 15.453 \\ \mathbf{c} \mathbf{H} \mathbf{E} \mathbf{O} \mathbf{k} \quad \text{compressed strut} \\ \mathbf{A} \mathbf{s} \mathbf{f} &:= 2\pi - \frac{\delta^2}{4} + \pi - \frac{\delta^2}{4} = 84.823 \\ \mathbf{m}^2 = 2 \\ \mathbf{n} \mathbf{m} \qquad \text{spacing of transverse horizontal reinforcement} \\ \mathbf{A} \mathbf{s} \mathbf{f} \stackrel{\mathbf{f} \mathbf{d}}{\mathbf{s} \mathbf{f}} &= 192.78 \\ \mathbf{A} \mathbf{f} \stackrel{\mathbf{f} \mathbf{d}}{\mathbf{s} \mathbf{f}} = 192.78 \\ \mathbf{N} \quad \frac{2.031}{2.118} \\ \mathbf{T} \mathbf{E} \mathbf{d} \mathbf{h}_{\mathbf{w}} \mathbf{v} \frac{\mathbf{h} \mathbf{f}}{\cot(\mathbf{0}\mathbf{f})} = 186.474 \\ \mathbf{D} \mathbf{H} \mathbf{C} \mathbf{N} \end{aligned}$$

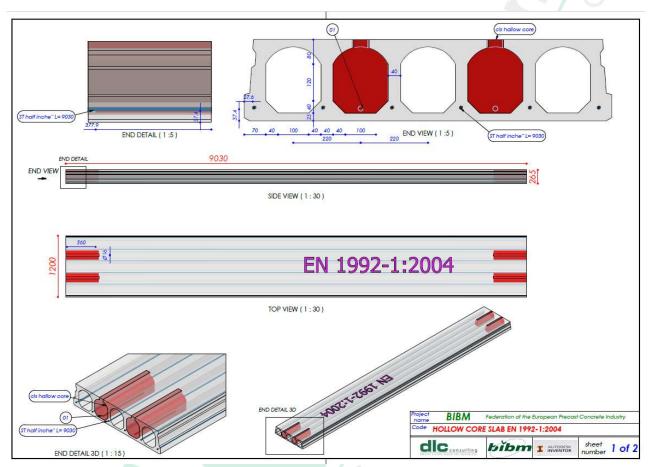
6.11 Fire checks

BIBM EC2 project - calculation report

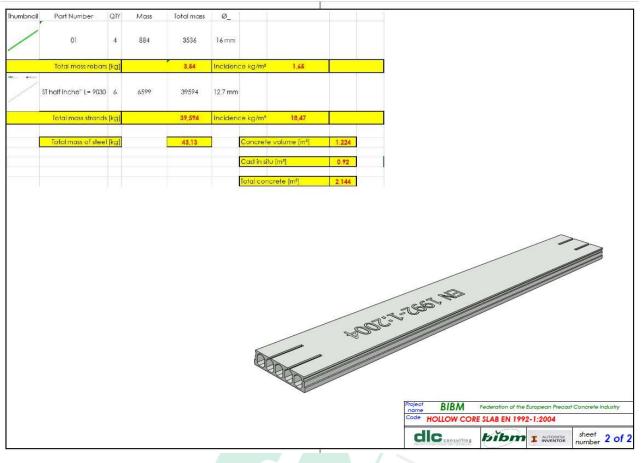


0	44	41	41	44	50	58	68	79	90	100	100	119	138	151	159	16
8	50	46	46	50	58	68	81	96	100	130	153	176	201	219	230	23
1	60	55	55	61	71	85	100	131	162	201	248	299	346	374	388	39
8	75	67	67	75	88	100	155	206	271	343	427	523	622	667	681	68
0	91	81	81	91	110	169	255	354	463	581	708	8038	72	-		
52	100	95	95	100	162		432	603	744	839	12					
20	139	100	100	139	220	398	727	57								
57	161	111	111	161	267	4817										
8	180	132	132	180	298	5238	308									
20	197	148	148	197	320	550	19									
19	215	163	163	215	339	573	33									
52	238	185	185	238	362	5978	47									
4	273	220	220	273	394	626	2									
	329	280	280	329	444	665	0									
-		384	384	427	528	728	99									
14	427				34(2)	000	1									
14		571	571	601	672	804	F1									

101



7 Hollowcore element - EN1992-1:2004


7.1 Shop drawings

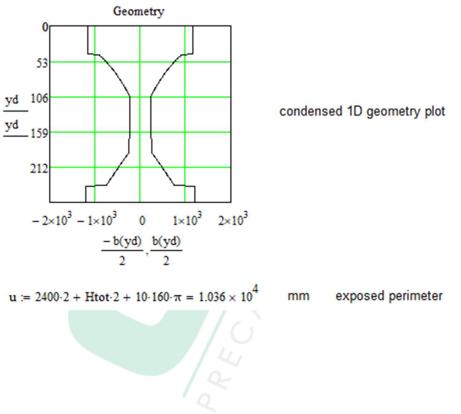
7.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

 $y_tr := (0 \ 42.5 \ 106.1 \ 106.11 \ 189.41 \ 240 \ 240.1 \ 265)^T$ Htot := max(y_tr) maximum depth


Width of corresponding chord:

 $b_{tr} := 4 \cdot (582 \ 578 \ 398 \ 112.8 \ 124.3 \ 378 \ 598 \ 600)^{T}$ $r_{circ} := 126$ radius of central void pipe $x_{circ}(y) := 2\sqrt{r_{circ}^{2} - (y - 160)^{2}}$ $b_{lin}(y) := linterp(y_{tr}, b_{tr}, y)$ $b_{circ}(y) := linterp(y_{tr}, b_{tr}, y) - 5 \cdot x_{circ}(y)$

 $b(y) := if(y \le 106.1 \land y \ge 42.5, b_{circ}(y), b_{lin}(y))$

yd := 0.. Htot

$$b(0) = 2.328 \times 10^3$$

bibm

Prestressing reinforcement

Area of a single strend:			nominal strand diameter
Area of a single strand:		and should be a star	12.7 mm 0.5'
Ap0 := 93 do	p := 12.7 mm	nominal strand diameter	15.24 mm 0.6'
Depth of prestressing strands from	upper chord:		
$dp := (180 \ 230 \ 220)^{T}$			
Area of strands at each depth:			
$Ap \coloneqq \begin{pmatrix} 0 \cdot Ap0 & 0 \cdot Ap0 & 12 \cdot Ap0 \end{pmatrix}^{T}$		$0.75 \cdot 1860 = 1.395 \times 10^3$	$0.9 \cdot 0.9 \cdot 1860 = 1.507 \times 10^3$
σp0 := 1400 MPa			
$\sigma \text{prec} := (0.4 \cdot \sigma p0 \ 1 \cdot \sigma p0 \ \sigma p0)^T$	initial prestre	ssing	
perdite := $0 \cdot (1 \ 1 \ 1)^T$ in p			
		-	
jp := rows(Ap) $jp = 3$			
k := 1 jp			
$\sigma \mathbf{o}_{k} \coloneqq \sigma \operatorname{prec}_{k} \left[\frac{\left(100 - \operatorname{perdite}_{k} \right)}{100} \right]$ $Ap_tot \coloneqq \sum_{k=1}^{jp} Ap_{k} \qquad Ap_{k}$	$p_{tot} = 1.116 \times 10^3$	$\sigma \mathbf{o} = \begin{pmatrix} 560\\ 1.4 \times 10^3\\ 1.4 \times 10^3 \end{pmatrix}$	
ypmax := max(dp) ypmax =			
$Np_tot := \sum_{k=1}^{jp} \left(\left(Ap_k \cdot \sigma o_k \right) \right)$	Np_tot = 1.562×10^6	⁵ N total prestressing initia	I force
$Yp := \frac{\sum_{k=1}^{jp} \left(dp_k \cdot Ap_k \cdot \sigma o_k \right)}{\sum_{k=1}^{jp} \left(Ap_k \cdot \sigma o_k \right)} = 220$		re of gravity of prestressing	

0 $\sigma c(\varepsilon) - 10$ σcc(ε) 0 -20- 30 - 40 - 4×10⁻³ - 2×10⁻³ 0 ε 2.046×10³ 1.023×10³ σ**p**(ε) 0 -1.023×10^{3} -2.046×10^{3} - 0.02 - 0.01 0.01 0.02 0 ε

7.3 Material constitutive laws employed in the calculation

7.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

Ac :=
$$\int_{0}^{\text{Htot}} b(y) \, dy$$
$$\rho p := \frac{\text{Ap}_{\text{tot}}}{\text{Ac}} = 3.529 \times 10^{-3}$$

geometric ratio for longitudinal prestressing tendons

 $Ac = 3.163 \times 10^{5}$

 $\rho tot := \frac{Ap_tot}{Ac} = 3.529 \times 10^{-3}$

total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy$$
 Syc = 3.878 × 10⁷

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 122.619$

Ixo_cls := $\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 \, dy \qquad \text{Ixo_cls} = 2.799 \times 10^9$

Global area of all prestressing reinforcement

Area_tr :=
$$s \leftarrow 0$$
 Area_tr = 1.116×10^3
for $x \in 1...jp$
 $s \leftarrow Ap_x + s$

First moment of the area referred to prestressing reinforcement only

$$Sxp := \sum_{i=1}^{jp} (Ap_i \cdot dp_i) \qquad Sxp = 2.455 \times 10^5$$

Centre of gravity of prestressing

$$\underline{Yp} := \frac{Sxp}{Area_tr} \qquad Yp = 220$$

Idealisation coefficients (elastic)

$$np := \frac{Ep}{Ecm} \qquad np = 5.374$$
$$ns := \frac{Es}{Ecm} \qquad ns = 5.512$$

7

Area of ideal cross-section

Aid := Ac +
$$(np - 1) \cdot \sum_{j=1}^{jp} Ap_j$$
 Aid = 3.212×10^5

First moment of the reinforced concrete area

Sxid :=
$$Ac \cdot yG + (np - 1) \cdot (Area_tr \cdot Yp)$$

Sxid = 3.985×10^{7}

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 124.099

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^2 dy - \sum_{i=1}^{jp} \left[\text{Ap}_i \cdot (dp_i - \text{Yid})^2 \right]$$

Second moment of the prestressing reinforcement area

Ixoidprec :=
$$np \cdot \sum_{i=1}^{jp} \left[Ap_i \cdot (dp_i - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidprec		$Ixo_{id} = 2.844 \times 10^9$		$\frac{\text{Ixo_id}}{\text{Ixo_cls}} = 1.016$

7.5 Loads

LOADS

interaxis := 2400 mm g1 := Ac·0.000025 = 7.907 kN/m dead load from self-weight g2 := $2 \cdot \frac{\text{interaxis}}{1000} = 4.8$ kN/m nonstructural dead load q := $3 \cdot \frac{\text{interaxis}}{1000} = 7.2$ kN/m live load $\frac{1}{2}$ = 8850 mm calculation length (span between supports)

ψ2 := 0.3 non-contemporaneity factor for quasi-permanent load combination

ψ1 := 0.5 non-contemporaneity factor for frequent load combination

$$Mq_SLSg1(x) := (g1) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$Mq_SLSg2(x) := (g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$SLS bending moment distribution from nonstructural dead load$$

$$Mq_SLSq(x) := (q \cdot \psi2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$SLS bending moment distribution from nonstructural dead load$$

$$Mq_SLSq(x) := (q \cdot \psi2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$SLS bending moment distribution from nonstructural dead load$$

7.6 Prestressing transfer and time-dependent behaviour

TRANSFER OF PRESTRESS (§8.10.2.2)

$\alpha 1 := 1$	gradual release of prestressing			
α2 := 0.19	for 7-wire st	rands		
$\sigma pm0 := \sigma p0 = 1.4 \times 10^3$ MPa		initial prestressing		
ηp1 := 3.2 for 7-wire strands				
$\eta 1 := 1$	in favourable	position		
fbpt := $\eta p1 \cdot \eta 1 \cdot fctdj(2) = 3.51$		MPa	equivalent constant bond stress at prestress realease following §(8.15)	
lpt := $\frac{\alpha 1 \cdot \alpha 2 \cdot \sigma pm0}{fbpt} \cdot \varphi p = 962.587$		mm	basic value of the transmission length following §(8.16)	
1pt1 := 0.81pt =	770.069	mm		lower-bound transfer length following §(8.17)
lpt2 := 1.2·lpt =	1.155 × 10 ³	mm		upper-bound transfer length following §(8.18)

Prestress losses

 $hn := 2 \cdot \frac{Ac}{u} = 61.076 \qquad mm$

 $\varepsilon cs := \frac{0.65}{1000} = 6.5 \times 10^{-4}$ shrinkage strain assumed as a result of laboratory tests on the specific concrete mix employed

for class 2 (low-relaxation) tendons following §3.3.2(5)

kρ := 0.16

 $t := 50.365 = 1.825 \times 10^4$ days Life span

$$\sigma cpQP2(x) := \frac{-Np_tot}{Aid} + \frac{[Mq_SLSg1(x) - Np_tot \cdot (Yp - Yid)] \cdot (Yp - Yid)}{Ixo_id} \qquad \sigma cpQP2\left(\frac{L}{2}\right) = -7.307 \qquad \text{MPa}$$

(conventional equivalent time for prestressing release)

$$\sigma cpQP23(x) := \frac{Mq_SLSg2(x) \cdot (Yp - Yid)}{Ixo_id}$$

$$\sigma cpQP23\left(\frac{L}{2}\right) = 1.585$$
 MPa

stress in quasi-permanent load combination at 23 days (conventional time for assemblage of the structure on site)

$$\sigma cpQP91(x) := \frac{Mq_SLSq(x) \cdot (Yp - Yid)}{Ixo_id}$$

 $\sigma cpQP91\left(\frac{L}{2}\right) = 0.713$ MPa

stress in quasi-permanent load combination at 91 days (conventional time for enter in use of the structure)

$$\Delta \sigma pr(\mathbf{x}, \mathbf{t}) := \left[\sigma p0 + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(\mathbf{x}) + \sigma cpQP23(\mathbf{x}) + \sigma cpQP91(\mathbf{x})) \right] \cdot \rho 1000 \cdot \left(\frac{24 \cdot \mathbf{t}}{1000} \right)^{kp}$$

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

 $h0 := 2 \cdot \frac{Ac}{n} = 61.076$ mm notional size of the member relative humidity RH := 50 % t0_T(t0) := t0 for cement class R $\alpha := 1$ $t0_mod(t0) := max \left[t0_T(t0) \cdot \left(\frac{9}{2 + t0_T(t0)}^{1.2} + 1 \right)^{\alpha}, 0.5 \right]$ $t0_mod(2) = 6.189$ $\alpha c1 := \left(\frac{35}{-fcm}\right)^{0.7} = 0.748$ $\alpha c2 := \left(\frac{35}{-fcm}\right)^{0.2} = 0.92$ $\alpha c3 := \left(\frac{35}{-fcm}\right)^{0.5} = 0.813$ $\beta h := if \left[-fcm > 35, min \left[1.5 \cdot \left[1 + (0.012 \cdot RH)^{18} \right] \cdot h0 + 250 \cdot \infty 3, 1500 \cdot \infty 3 \right], min \left[1.5 \cdot \left[1 + (0.012 \cdot RH)^{18} \right] \cdot h0 + 250, 1500 \right] \right] = 294.783$ $\beta t0(t0) := \frac{1}{0.1 + t0 \mod(t0)^{0.2}}$ $\beta c(t,t0) := \left(\frac{t - t0_mod(t0)}{\beta h + t - t0_mod(t0)}\right)^{0.3}$ $\beta fcm := \frac{16.8}{\sqrt{-fcm}} = 2.308$ $\varphi RH := if \left[-fcm > 35, \left(1 + \frac{1 - \frac{RH}{100}}{0.1 \cdot \sqrt[3]{h0}} \cdot cc1\right) \cdot cc2, 1 + \frac{1 - \frac{RH}{100}}{0.1 \cdot \sqrt[3]{h0}}\right] = 1.794$ $\varphi 0(t0) := \varphi RH \cdot \beta fcm \cdot \beta t0(t0)$ $\varphi(t,t0) := \varphi 0(t0) \cdot \beta c(t,t0)$ $\varphi(t, 91) = 1.595$ $\varphi(t,2) = 2.676$ φ(days, 2) (days, 23) (days, 91)1 5×10³ 1×10⁴ 1.5×10⁴ 0 days

[TIME-DEPENDENT LOSSES OF PRESTRESS (§5.10.6)]

$$\Delta \sigma p_csr(x,t) := \frac{-\varepsilon cs \cdot Ep - 0.8 \cdot \Delta \sigma pr(x,t) + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) \cdot \varphi(t,2) + \sigma cpQP23(x) \cdot \varphi(t,23) + \sigma cpQP91(x) \cdot \varphi(t,91))}{1 + \frac{Ep}{Ecm} \cdot \frac{Ap_tot}{Ac} \cdot \left[1 + \frac{Ac}{Ixoidcls} \cdot (Yp - Yid)^2\right] \cdot \left(1 + 0.8 \cdot \frac{\varphi(t,2) \cdot \sigma cpQP2(x) + \varphi(t,23) \cdot \sigma cpQP23(x) + \varphi(t,91) \cdot \sigma cpQP91(x)}{\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)}\right)}$$

$$prestress losses following §(5.46)$$

NOTE: a weighed creep coefficient was considered accounting for the 3 load phases previously introduced $\sigma pm(x,t) := \sigma p0 - \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) + \Delta \sigma p_csr(x,t)$ prestress considering immediate and delayed losses $\frac{\sigma pm(\frac{L}{2}, 365 \cdot 50)}{\sigma p0} = 0.842$ expected residual prestress ratio after 50 years of life with respect to initial

$$\varepsilon_{pm} := \frac{\sigma_{pm}\left(\frac{L}{2}, 365 \cdot 50\right)}{\sigma_{p0}} \cdot \varepsilon_{p0} \quad exp$$

expected residual strain after 50 years of life with respect to initial

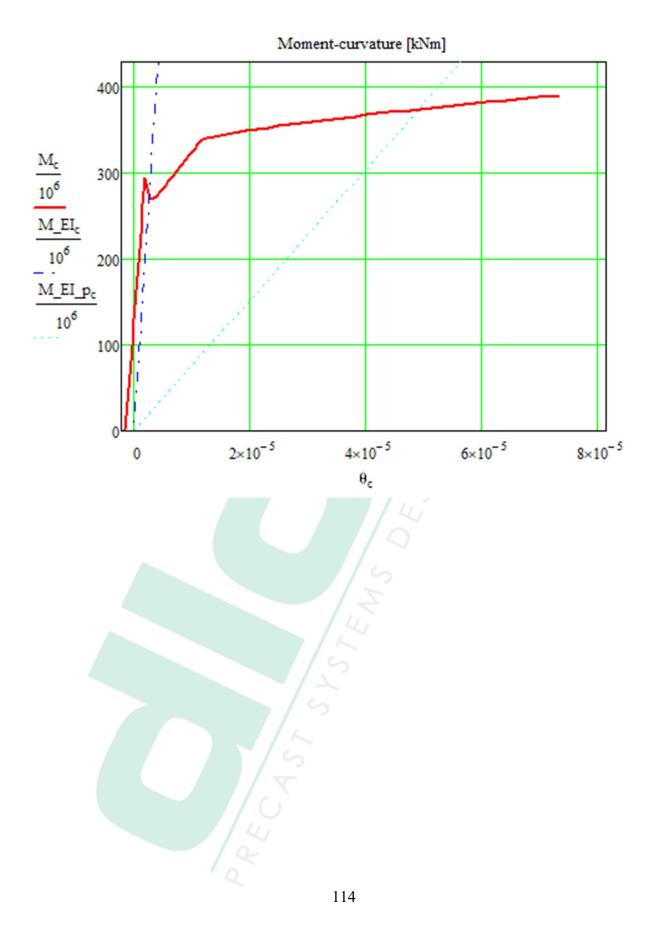
Np_tot =
$$1.562 \times 10^6$$

 $\sigma pm\left(\frac{L}{2}, 365.50\right) \cdot Ap_tot = 1.315 \times 10^6$ residual prestress force after 50 years of life

7.7 Non-linear moment-curvature diagram

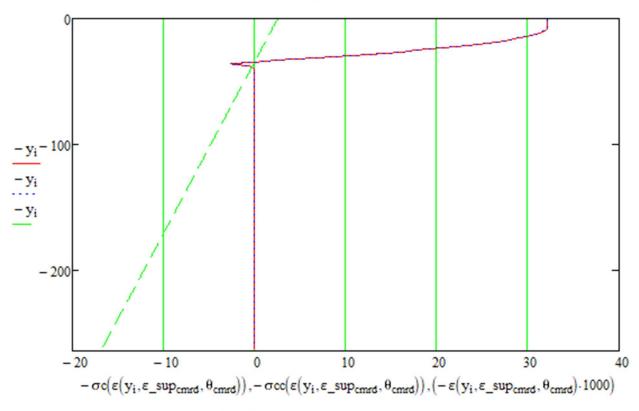
Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

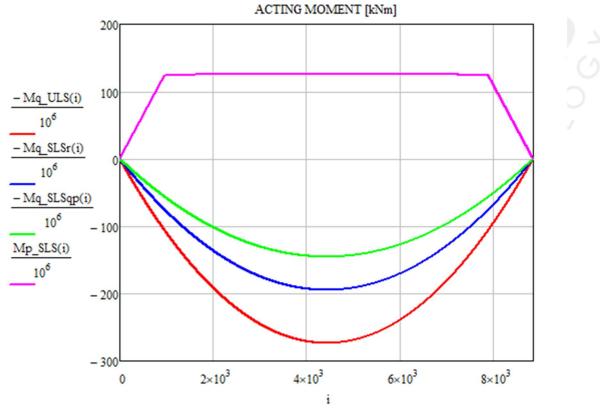
$$\underbrace{\mathbb{N}}_{i}(\varepsilon_\mathtt{sup},\theta) \coloneqq \sum_{i=1}^{Htot} \left(\sigma c \Big(\varepsilon \Big(\mathtt{y}_i, \varepsilon_\mathtt{sup}, \theta \Big) \Big) \cdot b \Big(\mathtt{y}_i \Big) \cdot \Delta \mathtt{y} \Big) + \sum_{j=1}^{jp} \left(\sigma p \Big(\varepsilon \Big(\mathtt{dp}_j, \varepsilon_\mathtt{sup}, \theta \Big) + \varepsilon \mathtt{pm}_j \Big) \cdot \mathtt{Ap}_j \Big) + \varepsilon \mathtt{pm}_j \Big) \cdot \mathtt{Ap}_j \Big) = 1$$


$$\mathbf{M}(\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta}) \coloneqq \sum_{i\,=\,1}^{Htot} \left[\boldsymbol{\sigma} \mathtt{c} \Big(\boldsymbol{\varepsilon} \big(\mathtt{y}_i, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \big) \Big) \cdot \mathtt{b} \big(\mathtt{y}_i \big) \cdot \boldsymbol{\Delta} \mathtt{y} \cdot \Big(\mathtt{y}_i - \mathtt{y} \mathtt{G} \big) \right] + \sum_{j\,=\,1}^{jp} \left[\boldsymbol{\sigma} \mathtt{p} \Big(\boldsymbol{\varepsilon} \Big(\mathtt{d} \mathtt{p}_j, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \Big) + \boldsymbol{\varepsilon} \mathtt{p} \mathtt{m}_j \Big) \cdot \mathtt{A} \mathtt{p}_j \cdot \Big(\mathtt{d} \mathtt{p}_j - \mathtt{y} \mathtt{G} \Big) \right]$$

Design external axial load

NS := -0




Condition at resisting (peak) moment (stress and strain)

7.8 Bending moment distribution

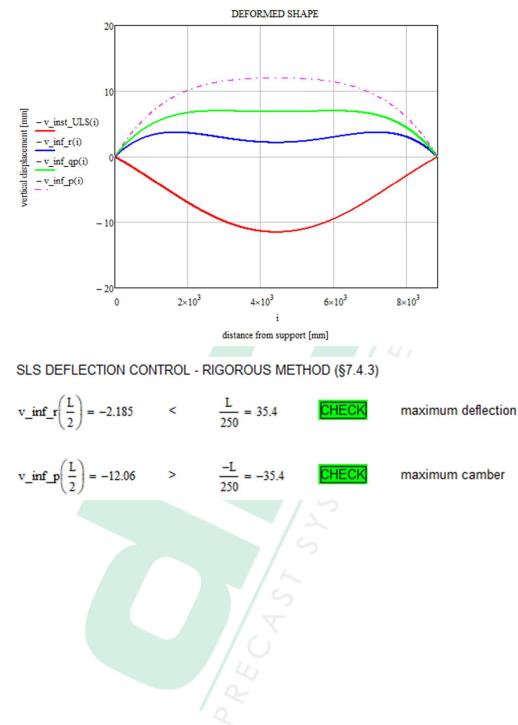
γg1 := 1.35	partial safety coefficient for self-	weight structural loads		
γg2 := 1.35	partial safety coefficient for non-structural certain dead loads			
γq := 1.5	partial safety coefficient for live I	oads or non-structural uncertain dead loads		
$Mq_ULS(x) := (g1 \cdot \gamma g$	$g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ $g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q		
$Mq_SLSr(x) := (g1 + $	$g^2 + q$ $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q lpt = 962.587		
	$g^2 + \psi 1 \cdot q \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2} \right)$	moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q		
Mq_SLSqp(x) := (g1	$+ g2 + \psi 2 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ $+ g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q		
Mq SLSg2(x) := (g1 - g1)	$+$ g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q		
$Mp_SLS(x) := if \left[x < lp \right]$	t,σpm(x,365·50)·Ap_tot·(Yp - Yid	$ \cdot \frac{x}{lpt}, if \Bigg[x > L - lpt, \sigma pm(x, 365.50) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{-x + L}{lpt}, \sigma pm(x, 365.50) \cdot Ap_tot \cdot (Yp - Yid) \Bigg] \Bigg] draw and a statement of the statement of $		
	i := 0 I.	contribution of prestressing equivalent load in SLS (without modification factors)		

distance from support [mm]

7.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

 $v_{inf_p(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (1 + \varphi(365 \cdot 50, 23))$


deflection profile at 50 years including creep for permanent load combination

 $v_{inf_qp(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (1 + \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)$

deflection profile at 50 years including creep for quasi permanent load combination

 $v_inf_r(x) := v_SLSg1(x) \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSr(x) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot (\varphi(365 \cdot 50, 91) + v_SLSqp(x) + v_SLSqp(x$

deflection profile at 50 years including creep for rare load combination

$$\begin{array}{ll} \operatorname{cnom}_{p} \coloneqq \operatorname{cmin}_{p} + \Delta c_{d} \operatorname{dev} = 36.75 \quad \operatorname{mm} \\ \operatorname{cnom}_{p} + \frac{\varphi p}{2} = 43.1 \end{array}$$

$$\begin{array}{ll} \text{SLS STRESS CONTROL (§7.2)} \\ \text{k1} = 0.6 & \operatorname{rsup} \coloneqq 1.05 \\ \text{k2} = 0.45 & \operatorname{prestressing modification coefficients} \\ \text{k3} = 0.8 & \operatorname{rinf} \coloneqq 0.95 \\ \text{k4} \approx 1 \\ \text{k5} = 0.75 \end{array}$$

$$\begin{array}{ll} \sigma \operatorname{cpgl}_{p} \operatorname{bot}(x) \coloneqq \frac{-Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{[Mq_SLSg1(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of bottom concrete chord for selfweight loads only} \\ \sigma \operatorname{cpgl}_{p} \operatorname{top}(x) \coloneqq \frac{-Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{[Mq_SLSg1(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of top concrete chord for selfweight loads only} \\ \sigma \operatorname{cpf}_{b} \operatorname{ot}(x) \coloneqq \frac{-Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{[Mq_SLSf(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of bottom concrete chord for frequent load combination} \\ \sigma \operatorname{cpr}_{b} \operatorname{tot}(x) \coloneqq \frac{-Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{[Mq_SLSr(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of bottom concrete chord for rare load combination} \\ \sigma \operatorname{cpr}_{a} \operatorname{bot}(x) \coloneqq \frac{-Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{[Mq_SLSr(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of bottom concrete chord for rare load combination} \\ \sigma \operatorname{cpr}_{a} \operatorname{bot}(x) \coloneqq \frac{-Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{[Mq_SLSr(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of top concrete chord for rare load combination} \\ \sigma \operatorname{cpr}_{a} \operatorname{cpr}_{a}(x) \vdash \operatorname{sup}_{a}(x) + \operatorname{rsup}_{a}(\frac{Np_\operatorname{tot}\operatorname{rsup}}{\operatorname{Aid}} + \frac{(Mq_SLSr(x) - \operatorname{rsup}\cdotNp_\operatorname{tot}(Yp - Yid)]\cdot(\operatorname{Htot} - Yid)}{\operatorname{Ixo_id}} \\ \text{elastic stress of bottom prestressing steel for rare load combination} \\ \\ \sigma \operatorname{cpr}_{a} \operatorname{crep stress} of bottom trestressing steel for rare load combination} \\ \end{array}$$

$\sigma cpg1_bot(lpt1) = -11.684$	>	$k1 \cdot (fcmj(2) + 8) = -13.578$ CHECK
	>	k2·fck = -20.25 not compulsory in environment XC
$\sigma cpg1_top(1pt1) = 0.683$	<	fctmj(2) = 2.193
	if not	the element is assumed to be cracked after transfer of prestressing
$\sigma cpf_bot\left(\frac{L}{2}\right) = -4.993$	<	fctm = 3.795
$\sigma cpr_bot\left(\frac{L}{2}\right) = -3.247$	<	fctm = 3.795
$\sigma cpr_top\left(\frac{L}{2}\right) = -6.915$	>	$k1 \cdot fck = -27$
	>	$0.4 \cdot \text{fcm} = -21.2$
$\sigma \operatorname{cpr_p}\left(\frac{L}{2}\right) = 1.18 \times 10^3$	<	$k5 \cdot fptk = 1.395 \times 10^3$ CHECK
$\sigma cpg1_bot(lpt1) = -11.684$	>	$k1 \cdot (fcmj(2) + 8) = -13.578$ CHECK
	>	k2·fck = -20.25 not compulsory in environment XC
$\sigma cpg1_top(1pt1) = 0.683$	<	fctmj(2) = 2.193
	if not	the element is assumed to be cracked after transfer of prestressing
$\sigma cpf_bot\left(\frac{L}{2}\right) = -4.993$	<	fctm = 3.795
$\sigma \operatorname{cpr_bot}\left(\frac{L}{2}\right) = -3.247$	<	fctm = 3.795
$\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -6.915$	>	$k1 \cdot fck = -27$
	>	$0.4 \cdot \text{fcm} = -21.2$
$\sigma \operatorname{cpr_p}\left(\frac{L}{2}\right) = 1.18 \times 10^3$	<	k5-fptk = 1.395×10^3 CHECK
		SK ON A

SLS CRACK CONTROL (§7.3)

$$c_act := Htot - dp_{jp} - 10 = 35$$

$$ksurf := min\left(1.5, \frac{c_act}{10 + cmin_dur_s}\right) = 1.5$$

$$wlim_cal := 0.2 \qquad mm$$

$$w \text{ freg } := 0 \qquad \leq \qquad wlim_cal = 0.2 \qquad CHECK$$

7.10 ULS checks

ULS BENDING-AXIAL CONTROL (§6.1)

Mrd = 387.63 > $\frac{Mq_ULS(\frac{L}{2})}{10^6} = 273.68$

CHECK

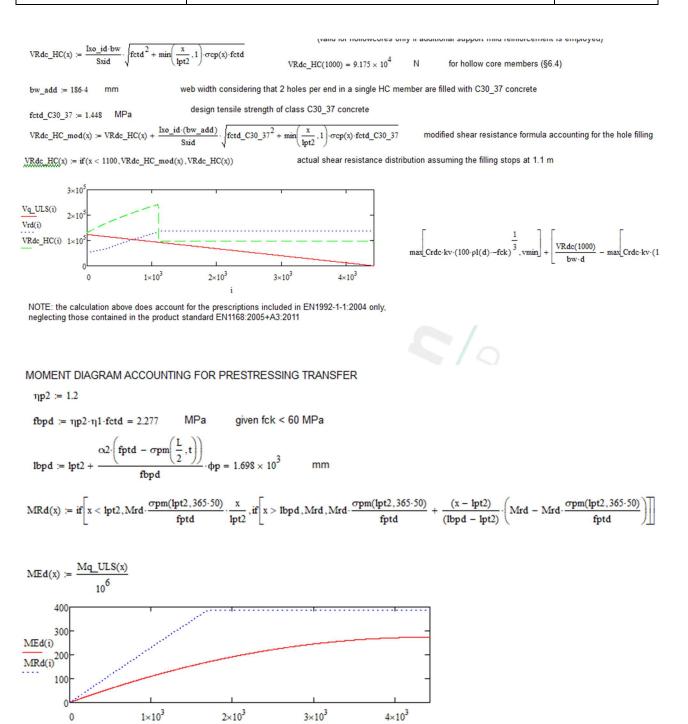
resisting moment calculated from moment-curvature diagram above

ULS SHEAR CONTROL (§6.2)

$$Vq_ULS(x) := \left| (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot (\frac{1}{2} - x) \right|$$
 shear distribution at Ultimate Limit State (ULS)

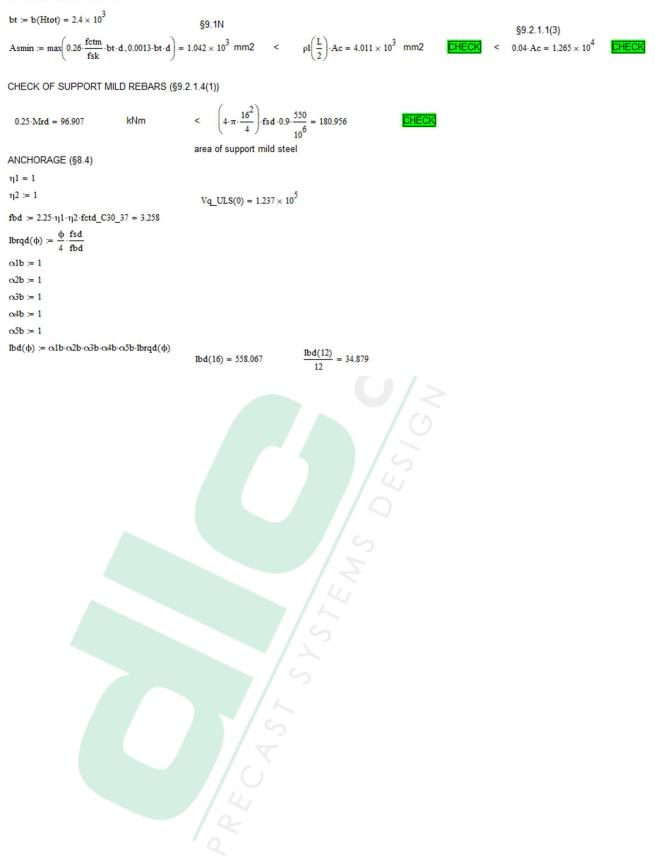
$$d := Yp = 220 \quad mm \qquad effective depth$$

$$VEd := Vq_ULS(d) = 1.175 \times 10^5 \text{ N} \qquad maximum shear at effective depth from support$$

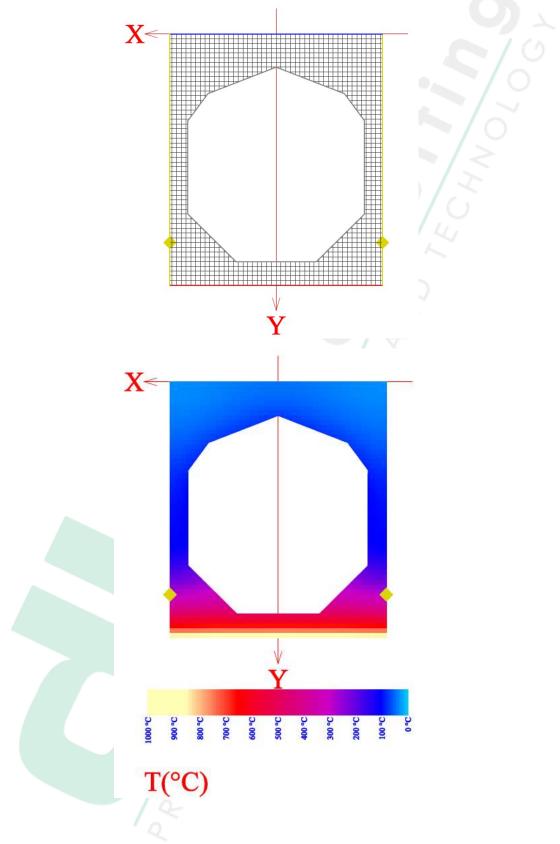

$$bw := 400 \quad mm \qquad we b width$$

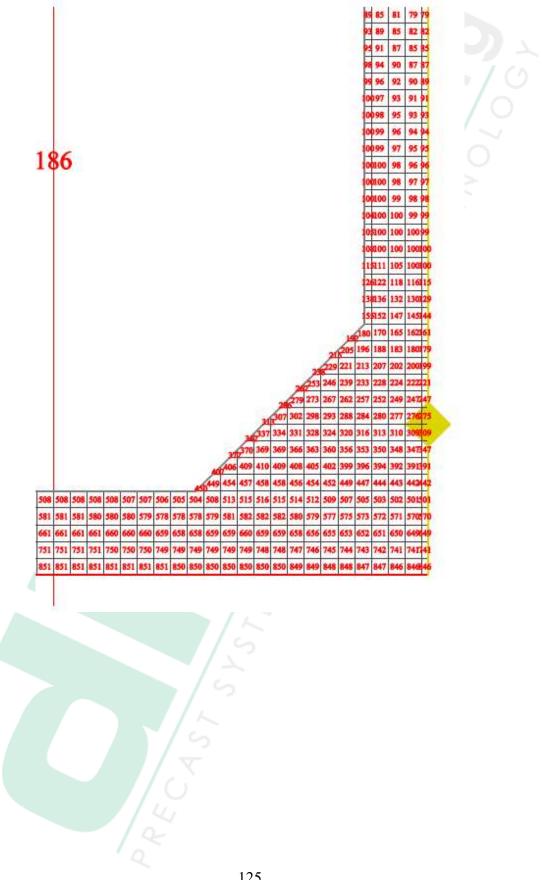
$$z := 0.9 \cdot d = 198 \quad mm$$
Conventional resultant lever arm
MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT (§6.2.2)

$$\rho(x) := \min\left(0.02, if\left(x < lpt2, \frac{Ap_tot}{bw \cdot d}, \frac{x}{lpt2}, if\left(x > L - lpt2, \frac{Ap_tot}{bw \cdot d}, \frac{-x + L}{lpt2}, \frac{Ap_tot}{bw \cdot d}, \frac{-y}{bw \cdot d}, \frac{-y}{lpt2}, \frac{-x}{bw \cdot d}, \frac{-x + L}{lpt2}, \frac{Ap_tot}{bw \cdot d}, \frac{-y}{bw \cdot d}, \frac{-x}{lpt2}, \frac{-x}{bw \cdot d}, $

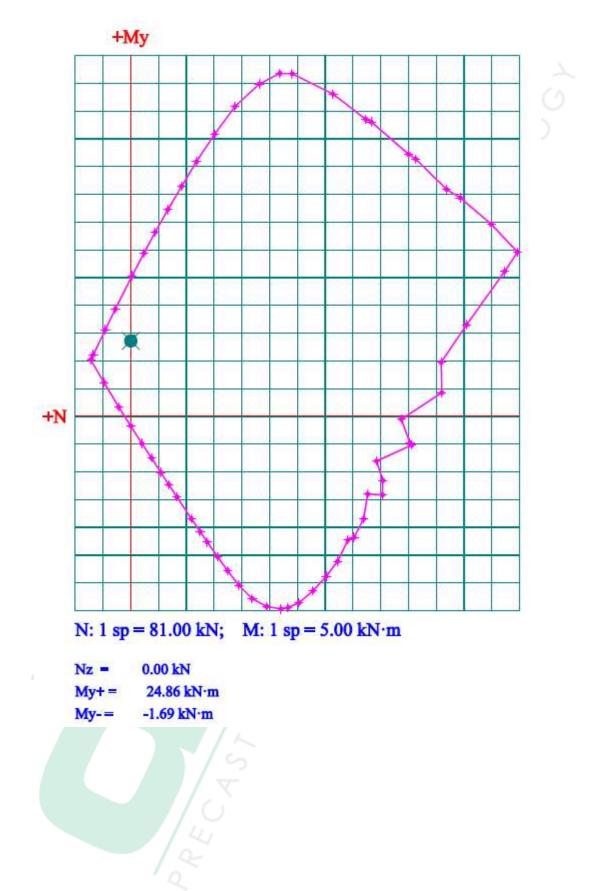


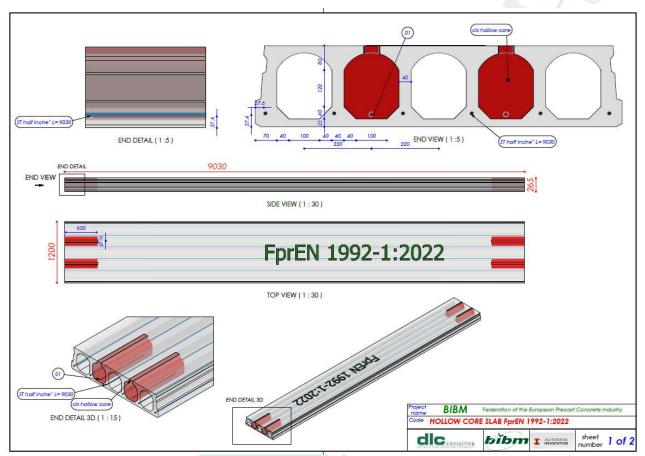
NOTE: no bending moment diagram translation was introduced, since the member is designed to not crack in shear, and not following the typical resistance mechanism for beam members not provided with transverse reinforcement


MINIMUM REINFORCEMENT

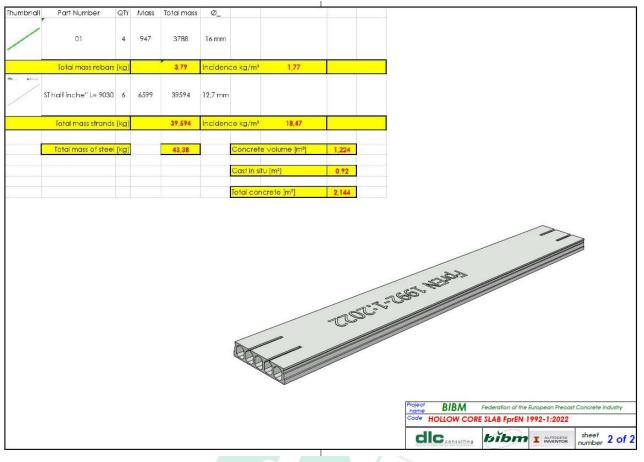


7.11 Fire checks





8 Hollowcore element – FprEN1992-1:2022


8.1 Shop drawings

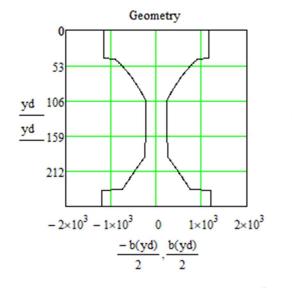
8.2 Definition of concrete and reinforcement geometry

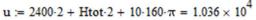
GEOMETRY

Concrete

Depth from upper chord

y_tr := (0 42.5 106.1 106.11 189.41 240 240.1 265)^T Htot := max(y_tr) hcopr := 30 net cover of longitudinal rebars Width of corresponding chord:


b_tr := 4.(582 578 398 112.8 124.3 378 598 600)^T r circ := 126 radius of central void pipe


$$\begin{aligned} x_circ(y) &:= 2\sqrt{r_circ^2 - (y - 160)^2} \\ b_lin(y) &:= linterp(y_tr, b_tr, y) \\ b_circ(y) &:= linterp(y_tr, b_tr, y) - 5 \cdot x_circ(y) \end{aligned}$$

$$\texttt{b}(y) \coloneqq \texttt{if}(y \leq 106.1 \land y \geq 42.5, \texttt{b_circ}(y), \texttt{b_lin}(y))$$

<u>yd</u> := 0.. Htot

$$b(0) = 2.328 \times 10^3$$

condensed 1D geometry plot

GEOMETRY

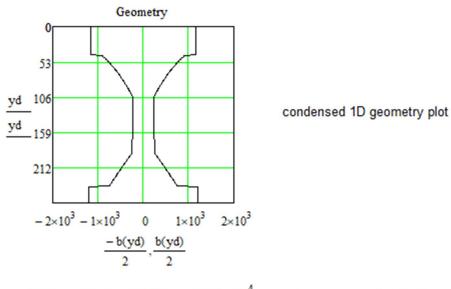
Concrete

Depth from upper chord

 $y_tr := (0 \ 42.5 \ 106.1 \ 106.11 \ 189.41 \ 240 \ 240.1 \ 265)^T$

Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars Width of corresponding chord:

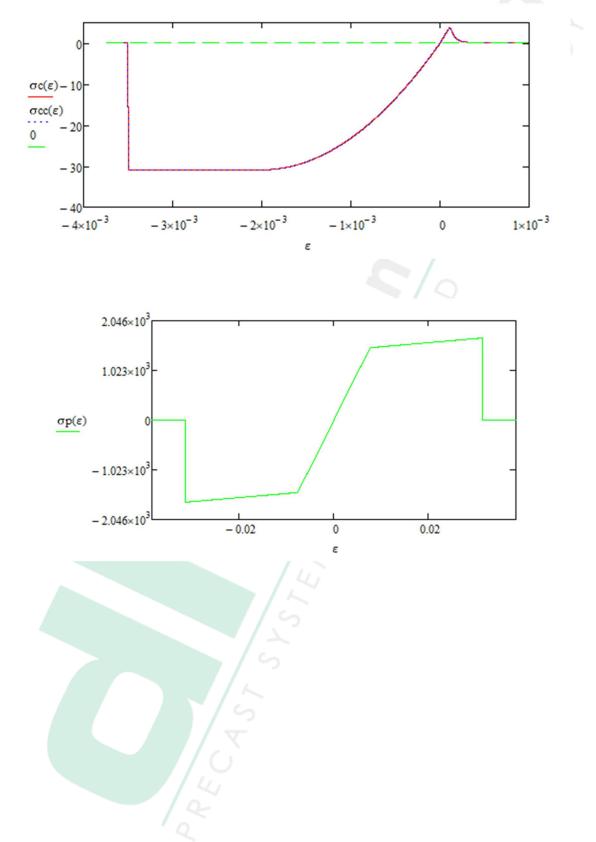

b_tr := 4 (582 578 398 112.8 124.3 378 598 600)^T r_circ := 126 radius of central void pipe

$$\begin{aligned} x_circ(y) &:= 2\sqrt{r_circ^2 - (y - 160)^2} \\ b_lin(y) &:= linterp(y_tr, b_tr, y) \\ b_circ(y) &:= linterp(y_tr, b_tr, y) - 5 \cdot x_circ(y) \end{aligned}$$

 $b(y) \coloneqq if(y \le 106.1 \land y \ge 42.5, b_circ(y), b_lin(y))$

yd := 0.. Htot

$$b(0) = 2.328 \times 10^3$$



 $u := 2400 \cdot 2 + Htot \cdot 2 + 10 \cdot 160 \cdot \pi = 1.036 \times 10^4$

8.3 Material constitutive laws employed in the calculation

8.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{Htot} b(y) dy$$
$$\rho p := \frac{Ap_tot}{Ac} = 3.529 \times 10^{-3}$$
$$\rho tot := \frac{Ap_tot}{Ac} = 3.529 \times 10^{-3}$$

geometric ratio for longitudinal prestressing tendons

total geometric ratio for longitudinal reinforcement

 $Ac = 3.163 \times 10^{5}$

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy \qquad \text{Syc} = 3.878 \times 10^{7}$$

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 122.619$

Ixo_cls := $\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy \qquad \text{Ixo_cls} = 2.799 \times 10^9$

Global area of all prestressing reinforcement

Area_tr :=
$$s \leftarrow 0$$
 Area_tr = 1.116×10^3
for $x \in 1...jp$
 $s \leftarrow Ap_x + s$

First moment of the area referred to prestressing reinforcement only

$$Sxp := \sum_{i=1}^{JP} (Ap_i \cdot dp_i) \qquad Sxp = 2.455 \times 10^5$$

Centre of gravity of prestressing

$$\underline{Yp} := \frac{Sxp}{Area_tr} \qquad Yp = 220$$

Idealisation coefficients (elastic)

$$np := \frac{Ep}{Ecm} \qquad np = 5.465$$
$$ns := \frac{Es}{Ecm} \qquad ns = 5.605$$

Area of ideal cross-section

Aid := Ac + (np - 1)
$$\cdot \sum_{j=1}^{jp} Ap_j$$
 Aid = 3.213 × 10⁵

First moment of the reinforced concrete area

Sxid :=
$$Ac \cdot yG + (np - 1) \cdot (Area_tr \cdot Yp)$$

Sxid = 3.988 × 10⁴

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$

$$Yid = 124.129$$

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^{2} dy - \sum_{i=1}^{jp} \left[Ap_{i} \cdot (dp_{i} - \text{Yid})^{2} \right]$$

Second moment of the prestressing reinforcement area

Ixoidprec :=
$$np \cdot \sum_{i=1}^{jp} \left[Ap_i \cdot (dp_i - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidprec
$$Ixo_id = 2.845 \times 10^9 \text{ mm}^4$$
 $\frac{Ixo_id}{Ixo_cls} = 1.017$

8.5 Loads

8.6 Prestressing transfer and time-dependent behaviour

TRANSFER	OF PRESTRESS (§13.5.3	21
IRANSFER	OF FREDIREDD (\$13.5.5	2)

 $\alpha 1 := 1$ gradual release of prestressing

o2 := 0.26 for 7-wire strands

 $\sigma pm0 := \sigma p0 = 1.4 \times 10^3$

 $\eta 1 := 1$ in favourable position

$$lpt := \frac{\gamma c}{1.5} \cdot \frac{\alpha 1 \cdot \alpha 2 \cdot \sigma pm0}{\eta 1 \cdot \sqrt{(-fcmj(2) - 8)}} \cdot \varphi p = 906.996$$

lpt1 := 0.8lpt = 725.597mmlower-bound transfer length following §(13.6)lpt2 := $1.2 \cdot lpt = 1.088 \times 10^3$ mmupper-bound transfer length following §(13.7)

mm

Prestress losses

$$\begin{array}{l} hn \coloneqq 2 \cdot \frac{Ac}{u} = 61.076 \\ A_{\text{c}} \coloneqq 0.79 + \frac{(hn - 200)}{(500 - 200)} \cdot (0.75 - 0.79) = 0.809 \\ \varepsilon cs \coloneqq \frac{0.65}{1000} = 6.5 \times 10^{-4} \\ \text{ploo} \coloneqq 0.025 \end{array} \qquad \text{shrinkage strain assumed as a result of laboratory tests on the specific concrete mix employed} \\ \end{array}$$

kp := 0.16t := 50.365 = 1.825 × 10⁴ days

$$\sigma cpQP2(x) := \frac{-Np_tot}{Aid} + \frac{[Mq_SLSg1(x) - Np_tot \cdot (Yp - Yid)] \cdot (Yp - Yid)}{Ixo_id} \qquad \sigma cpQP2\left(\frac{L}{2}\right) = -7.302$$

stress in quasi-permanent load combination at 2 days (conventional equivalent time for prestressing release)

Life span

$$\sigma cpQP23(x) := \frac{Mq_SLSg2(x) \cdot (Yp - Yid)}{Ixo id}$$

 $\sigma cpQP23\left(\frac{L}{2}\right) = 1.584$

basic value of the transmission length following §(13.4)

stress in quasi-permanent load combination at 23 days (conventional time for assemblage of the structure on site)

$$\sigma cpQP91(x) := \frac{Mq_SLSq(x) \cdot (Yp - Yid)}{Ixo_id}$$

 $\sigma cpQP91\left(\frac{L}{2}\right) = 0.713$

stress in quasi-permanent load combination at 91 days (conventional time for enter in use of the structure)

$$\Delta \sigma pr(\mathbf{x}, \mathbf{t}) \coloneqq \left[\sigma p0 + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(\mathbf{x}) + \sigma cpQP23(\mathbf{x}) + \sigma cpQP91(\mathbf{x})) \right] \cdot \rho 1000 \cdot \left(\frac{24 \cdot \mathbf{t}}{1000} \right)^{k\rho}$$

0

0 5×10³ 1×10⁴ 1.5×10⁴ days

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

RH := 50
t0_adj(t0) := t0
(3bc_fcm :=
$$\frac{1.8}{(-fcm)^{0.7}} = 0.112$$
 (3bc_t_t0(t,t0) := $\ln\left[\left(\frac{30}{t0_adj(t0)} + 0.035\right)^2 (t-t0) + 1\right]$
(3dc_fcm := $\frac{412}{(-fcm)^{1.4}} = 1.588$
(3dc_r0(t0) := $\frac{1 - \frac{RH}{100}}{3 \sqrt{0.1 + \frac{Im}{100}}} = 1.27$
(3dc_t0(t0) := $\frac{1}{0.1 + t0_adj(t0)^{0.2}}$
 $\gamma(t0) := \frac{1}{2.3 + \frac{3.5}{\sqrt{t0_adj(t0)}}}$
 $ccm := \left(\frac{35}{-fcm}\right)^{0.5} = 0.813$
(3h := min(1.5-ln + 250-ccm, 1500-ccm) = 294.774
(3dc_t_t0(t,t0) := $\left[\frac{(t-t0)}{(3h+(t-t0))}\right]^{\gamma(10)}$
 $\varphi dc(t,t0) := \beta dc_fcm \beta dc_k RH \beta dc_t0(t0) \beta dc_t_t0(t,t0)$
 $\varphi bc(t,t0) := \beta bc_fcm \beta bc_t t0(t,t0)$
 $\varphi(t,2) = 3.312$ $\varphi(t,91) = 1.652$

TIME-DEPENDENT LOSSES OF PRESTRESS (§7.6.4)

$$\Delta \sigma p_csr(x,t) := \frac{-\varepsilon cs \cdot Ep - 0.8 \cdot \Delta \sigma pr(x,t) + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) \cdot \varphi(t,2) + \sigma cpQP23(x) \cdot \varphi(t,23) + \sigma cpQP91(x) \cdot \varphi(t,91))}{1 + \frac{Ep}{Ecm} \cdot \frac{Ap_tot}{Ac} \cdot \left[1 + \frac{Ac}{Ixoidcls} \cdot (Yp - Yid)^2\right] \cdot \left(1 + 0.8 \cdot \frac{\varphi(t,2) \cdot \sigma cpQP2(624) + \varphi(t,23) \cdot \sigma cpQP23(624) + \varphi(t,91) \cdot \sigma cpQP91(624)}{\sigma cpQP2(624) + \sigma cpQP23(624) + \sigma cpQP91(624)}\right)}$$

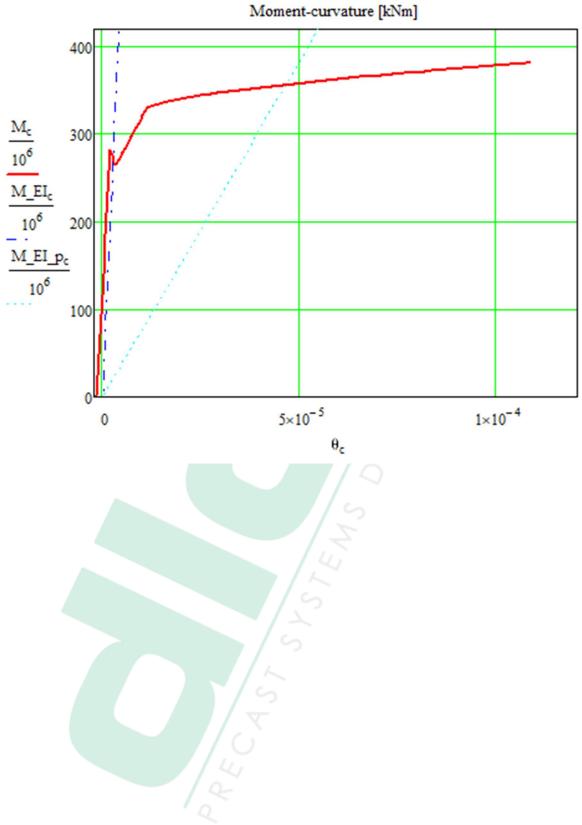
NOTE: a weighed creep coefficient was considered accounting for the 3 load phases previously introduced $\sigma pm(x,t) := \sigma p0 - \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) + \Delta \sigma p_csr(x,t)$ prestress considering immediate and delayed losses

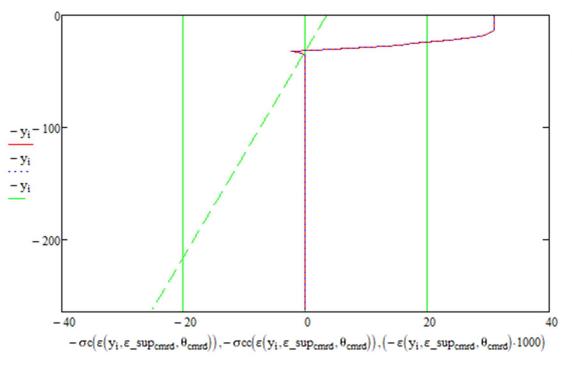
 $\frac{\sigma pm\left(\frac{L}{2}, t\right)}{\sigma p0} = 0.829$ expected residual prestress ra

expected residual prestress ratio after 50 years of life with respect to initial

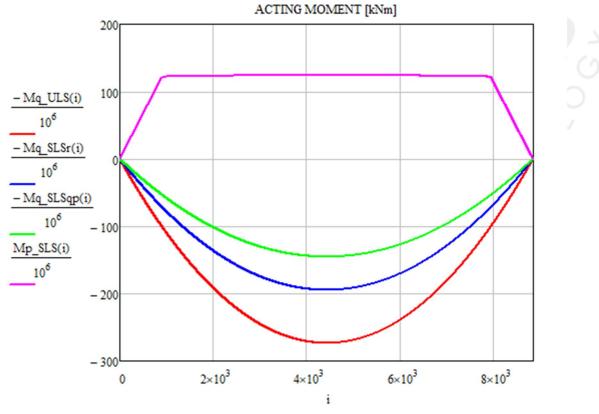
$$\varepsilon pm := \frac{\sigma pm\left(\frac{L}{2}, t\right)}{\sigma p0} \cdot \varepsilon p0$$

expected residual strain after 50 years of life with respect to initial


 $\sigma pm\left(\frac{L}{2}, t\right) \cdot Ap_tot = 1.295 \times 10^6$ N residual prestress force after 50 years of life Np_tot = 1.562 × 10⁶ N initial prestress force



8.7 Non-linear moment-curvature diagram


Condition at resisting (peak) moment (stress and strain)

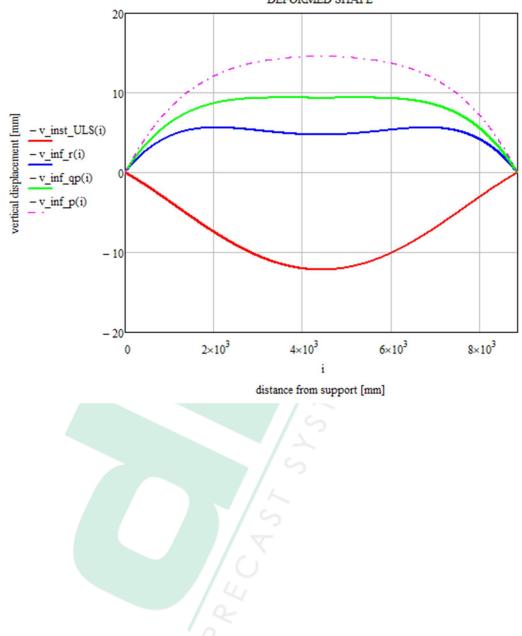
8.8 Bending moment distribution

γg1 := 1.35 partial safety coefficient for self-weight structural loads γg2 := 1.35 partial safety coefficient for non-structural certain dead loads partial safety coefficient for live loads or non-structural uncertain dead loads $\gamma q := 1.5$ $Mq_ULS(x) := (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q Mq_SLSr(x) := $(g1 + g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q Mq_SLSf(x) := $(g1 + g2 + \psi 1 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ lpt = Mq_SLSqp(x) := $(g1 + g2 + \psi 2 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q $Mq SLSg2(x) := (g1 + g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q $Mp_SLS(x) := if\left[x \leq lpt, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{x}{lpt}, if\left[x \geq L - lpt, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{-x + L}{lpt}, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid)\right]\right]$ contribution of prestressing equivalent load in SLS (without modification factors)

distance from support [mm]

8.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:



$$v_inf_p(x) := \frac{v_SLSg1(x) \cdot (\varphi(t,2) - \varphi(t,23)) + v_SLSg2(x) \cdot (1 + \varphi(t,23))}{1.05}$$

deflection profile at 50 years including creep for permanent load combination
$$v_inf_qp(x) := \frac{v_SLSg1(x) \cdot (\varphi(t,2) - \varphi(t,23)) + v_SLSg2(x) \cdot (\varphi(t,23) - \varphi(t,91)) + v_SLSqp(x) \cdot (1 + \varphi(t,91))}{1.05}$$

deflection profile at 50 years including creep for quasi permanent load combination

$$v_inf_r(x) := \frac{v_SLSg1(x) \cdot (\varphi(t,2) - \varphi(t,23)) + v_SLSg2(x) \cdot (\varphi(t,23) - \varphi(t,91)) + v_SLSqp(x) \cdot \varphi(t,91) + v_SLSr(x)}{1.05}$$

deflection profile at 50 years including creep for rare load combination

DEFORMED SHAPE

SLS STRESS CONTROL (§9.2.1)

k1 := 0.6	rsup := 1.05	
k2 := 0.45	rinf := 0.95	prestressing modification coefficients
k3 := 0.8		Np_tot = 1.562×10^6
k4 := 1		- <u>-</u>
k5 := 0.8	0.75 in EN1992-1-1	:2002

NOTE: the denomination of the allowable stress coefficients following k factors was kept similar to that of EN1992-1-1:2002

$$\begin{aligned} \sigma cpgl_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot [Htot - Yid)}{Iso_id} \\ \sigma cpgl_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot (-Yid)}{Iso_id} \\ \sigma cpgl_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot (-Yid)}{Iso_id} \\ \sigma cpf_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot (-Yid)}{Iso_id} \\ \sigma cpf_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_bot(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_top(x) &= \frac{-Np_tot:rsup}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_top(x) &= \frac{-Np_tot:rimf}{Aid} + \frac{[Mq_SLSgl(x) - rsup:Np_tot(Yp - Yid)] \cdot ((-Yid)]}{Iso_id} \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) \cdot (rsup:Np_tot(Yp - Yid)] \cdot (-Yid)} \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) \cdot rsup \cdot Np_tot(Yp - Yid)] \cdot (-Yid) \quad rsup:Np_tot(Yp - Yid)] \cdot (dp_{jp} - Yid)] \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) \cdot rsup \cdot Np_tot(x) = rsup \cdot Np_tot(Yp - Yid)] \cdot (dp_{jp} - Yid)] \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) \cdot rsup \cdot Np_tot(x) = rsup \cdot Np_tot(Yp - Yid)] \cdot (dp_{jp} - Yid)] \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) \cdot rsup \cdot Np_tot(x) = rsup \cdot Np_tot(Yp - Yid)] \cdot (dp_{jp} - Yid)] \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) \cdot rsup \cdot Np_tot(x) = rsup \cdot Np_tot(Yp - Yid)] \cdot (dp_{jp} - Yid)] \\ \sigma cpr_top(x) &= \sigma cpr_sot(x) = $

CHECK

SLS CRACK CONTROL (§9.2.3)

$$c_act := Htot - dp_{jp} - 10 = 35$$

$$ksurf := min\left(1.5, \frac{c_act}{10 + cmin_dur_s}\right) = 1.5$$

$$wlim_cal := 0.2 \cdot ksurf = 0.3 \quad mm$$

$$w_freq := 0 \quad \leq \quad wlim_cal = 0.3$$

8.10 ULS checks

ULS BENDING-AXIAL CONTROL (§8.1)

Mrd = 380.537 >
$$\frac{Mq_ULS(\frac{L}{2})}{10^6} =$$

resisting moment calculated from moment-curvature diagram above

ULS SHEAR CONTROL (§8.2)

 $Vq_ULS(x) := \left| (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} - x\right) \right|$ shear action distribution at Ultimate Limit State (ULS) d := Yp = 220effective depth of cross-section mm $VEd := Vq_ULS(d) = 1.175 \times 10^5 N$ design shear action at control section at distance d from support safety factor for initial shear check $\gamma v := 1.3$ bw := 400 mm design web width conventional lever arm of internal stress resultants $z := 0.9 \cdot d = 198$ $\tau Ed := \frac{VEd}{bw \cdot z} = 1.484$ MPa equivalent mean acting shear stress on control cross-section maximum aggregate diameter following assumed mix design Dlower := 16 mm ddg := min if $-fck > 60, 16 + Dlower \cdot \left(\frac{60}{-fck}\right)^2, 16 + Dlower |, 40| = 32$ size parameter

273.68

CHECK

MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT (§8.2.2)

NOTE: not proper for hollowcore members unless provided by additional longitudinal end reinforcement

$$\tau Rdc_min(x) := \frac{11}{\gamma v} \cdot \sqrt{\frac{-fck}{(fptd - \sigma pm(x, t))} \cdot \frac{ddg}{d}}$$

$$\tau Rdc_min(d) = 0.913$$

MPa

not checked with TEd -> detailed evaluation is mandatory following §8.2.1

$$\rho l(x) := if\left(x < lpt2, \frac{Ap_tot}{bw \cdot d} \cdot \frac{x}{lpt2}, if\left(x > L - lpt2, \frac{Ap_tot}{bw \cdot d} \cdot \frac{-x + L}{lpt2}, \frac{Ap_tot}{bw} \cdot \frac{Ap_tot}{dt} \cdot \frac{-x + L}{lpt2}, \frac{Ap_tot}{lpt2} \cdot \frac{Ap_tot}{lpt2}, $

 $\frac{tot}{d}$ longitudinal geometric reinforcement ratio §(8.28)

$$ep := Yp - Yid = 95.871$$
 mm eccen

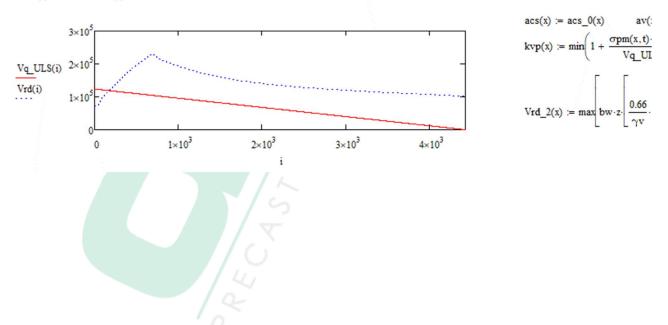
centricity of prestressing

§(8.20)

$$acs_0(x) := max \left(\frac{Mq_ULS(x)}{Vq_ULS(x)}, d \right)$$

$$h_1(x) := min \left[\begin{array}{c} 0.5 \\ 0.5 \end{array} \right] \left(x_1 + d \right) Ac$$

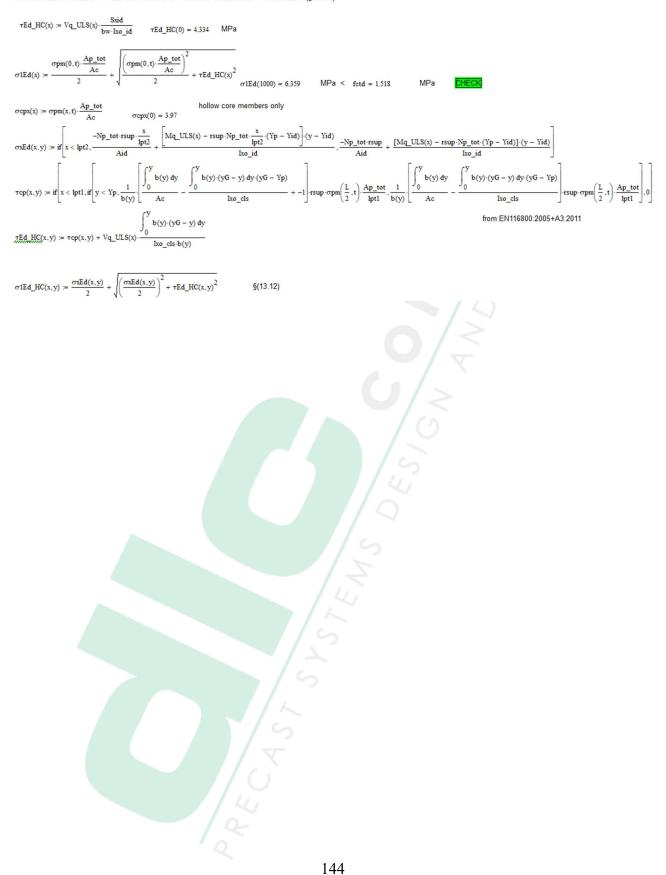
acs_0(x)

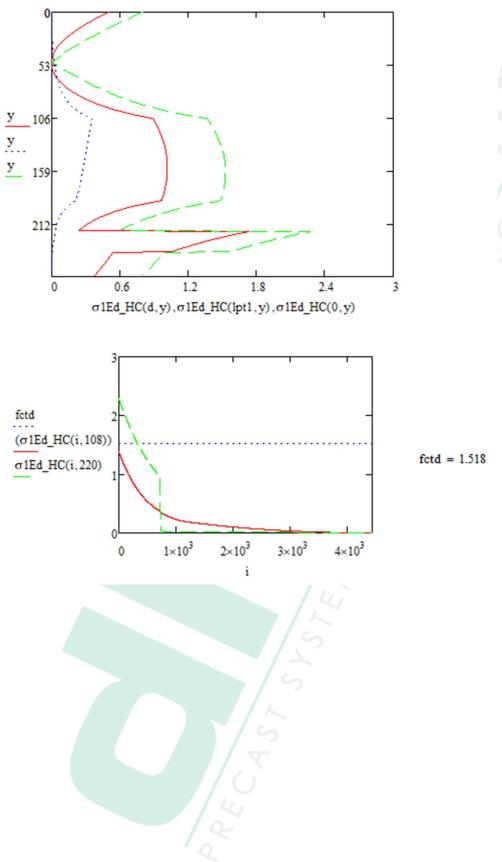

 $av_0(x) := \sqrt{\frac{acs_0(x)}{4} \cdot d}$

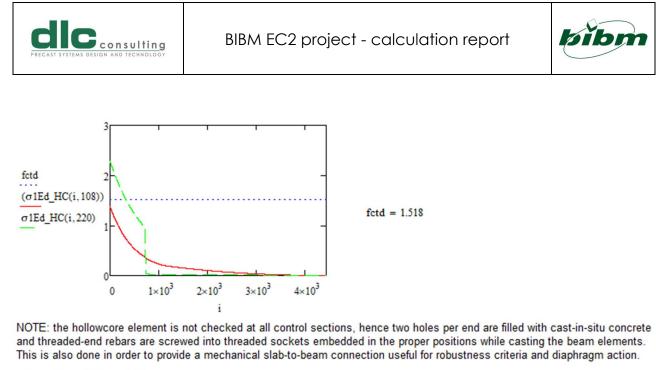
§(8.30) accounting for comments in §8.2.2(5)

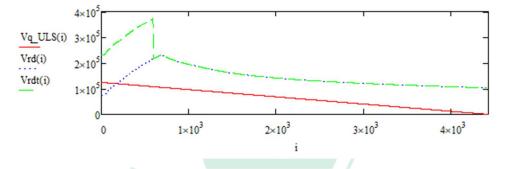
$$\exp + \frac{d}{3} \cdot \frac{Ac}{bw \cdot z}, 0.18 \cdot \frac{Ac}{bw \cdot z}$$
 §(8.34)
§(8.29) accounting for comments in §8.2.2(5)

 $\tau Rdc(x) := max(min(\tau Rdc_0(x) + k1(x) \cdot \sigma cp(x), \tau Rdcmax(x)), \tau Rdc_min(x))$ §(8.32)


```
Vrd(x) := bw \cdot z \cdot \tau Rdc(x)
```


SHEAR RESISTANCE OF PRECAST MEMBERS WITHOUT SHEAR REINFORCEMENT (§13.5.5)



$$Vrdt(x) := if\left(x < 600, Vrd(x) + \frac{2}{3} \cdot bw_add \cdot d \cdot fctd_C30_37, Vrd(x)\right)$$

MINIMUM REINFORCEMENT (§12.2)

ANCHORAGE (§11.4)

klb := 50 for good bond conditions kcp := 1 $\frac{3}{2}$ nσ := cs := 50 cx := 75 cy := 40 $cd(\phi) := min(0.5 \cdot cs, cx, cy, 3.75 \cdot \phi)$ cd(12) = 25Г 1

$$1bd(\phi) := \max\left[klb \cdot kcp \cdot \phi \cdot \left(\frac{fsd}{435}\right)^{n\sigma} \cdot \left(\frac{25}{-fck}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{3}{2}} \cdot \left(\frac{1.5 \cdot \phi}{cd(\phi)}\right)^{\frac{1}{2}}, 10 \cdot \phi\right]$$

length of straight part for 90° bent bars

 $1b90(\phi) := max(70, 1bd(\phi) - 15 \cdot \phi, 10 \cdot \phi)$

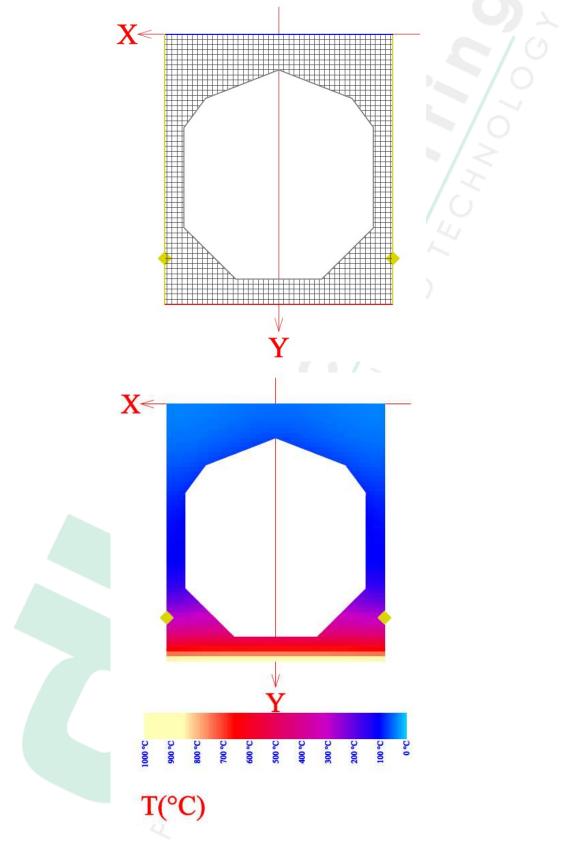
1b90(12) = 161.872 1b90(16) = 339.319

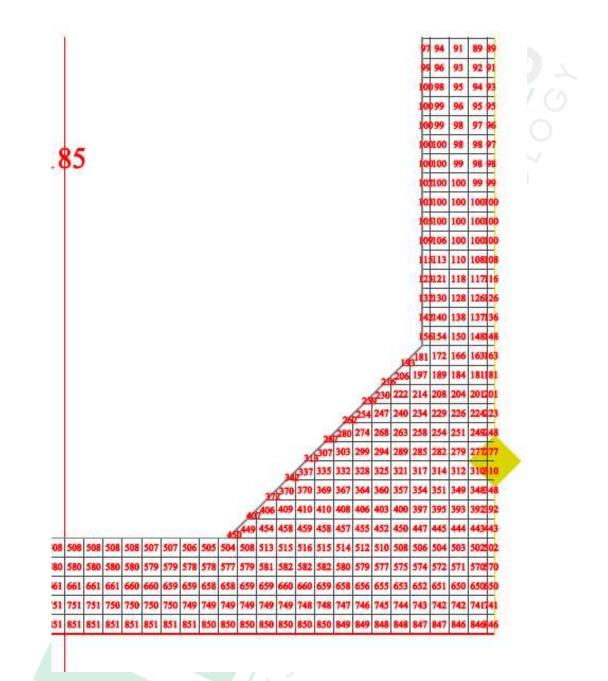
1

1

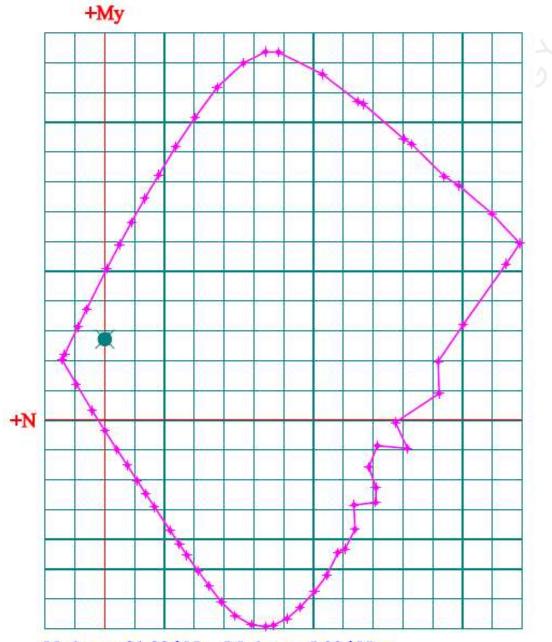
length of straight part for 135° bent bars (stirrups)

 $1b135(\phi) := max(50, 1bd(\phi) - 15 \cdot \phi, 5 \cdot \phi)$

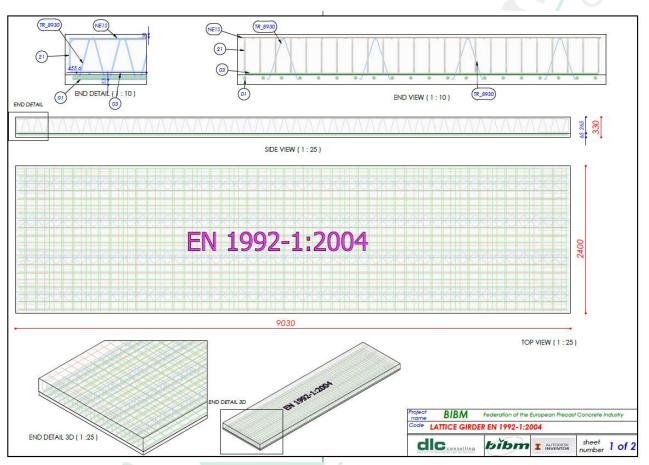

1b135(12) = 161.872 1b135(8) = 50



8.11 Fire checks



N: 1 sp = 81.00 kN; M: 1 sp = $5.00 \text{ kN} \cdot \text{m}$



9 Lattice girder element –EN1992-1:2004

9.1 Shop drawings

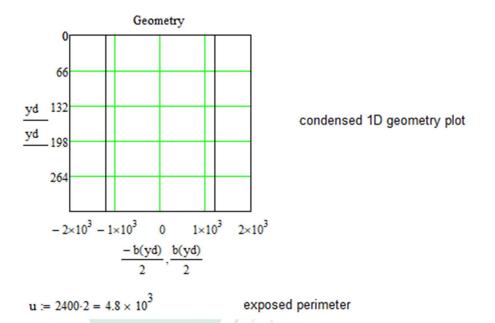
humbnail	Part Number	QIY	Mass	Total mass	Ø_	Ø_longitudinal	pattem_T	Ø_transverse	pattem_L	
/	01	20	31713	634260	2 <mark>4</mark> mm					
/	03	45	2042	91890	12 mm					
/	21	48	777	37296	12 mm					57 1592-1-1-70-7
	Total mass rebo	irs [kg]		763,45	ir	icidence kg/m³	106,78			ST-1200
	NE1S	1	62356	62356		6 mm	150 mm	6 mm	150 mm	
Total mass v	welded-wire-mesh	es [kg]		62,36	lr	icidence kg/m³	8,72			
	TR_8750	4	28743	114972						
_	Total mass stran	ds [kg]		114,972	ir	icidence kg/mª	16,08			
	Total mass of ste	el [kg]		940,77		Concrete volum	ne [m³]	1,41		
						Cast in situ [mª]		5.74		
						Total concrete [m ^a	7,15		
										Project BIBM Federation of the European Precast Concrete Indus
										Code LATTICE GIRDER EN 1992-1:2004
										dic. sheet 2

9.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord


$$y_{tr} := (0 \ 330)^{T}$$

Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b_tr} &:= (2400 \ 2400)^T \\ \textbf{r_circ} &:= 0 \quad \text{radius of central void pipe} \\ \textbf{x_circ}(y) &:= 2 \sqrt{\textbf{r_circ}^2 - \left(y - \frac{\text{Htot}}{2}\right)^2} \\ \textbf{b_lin}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) \\ \textbf{b_circ}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) - \textbf{x_circ}(y) \\ \textbf{b}(y) &:= \text{if} \left[y \leq \left(\frac{\text{Htot}}{2} + \textbf{r_circ} \right) \land y \geq \frac{\text{Htot}}{2} - \textbf{r_circ}, \texttt{b_circ}(y), \texttt{b_lin}(y) \right] \end{split}$$

bibm

Longitudinal mild reinforcement

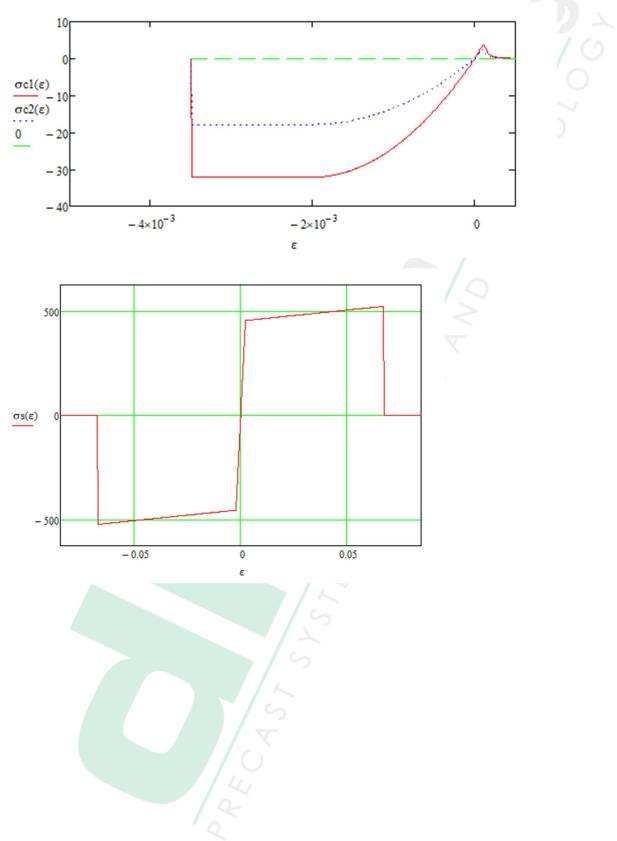
Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord ds := $(30 \ 255 \ 280 \ 295)^T$

As :=
$$(4 \cdot A(10) \quad 0 \cdot A(10) \quad 8 \cdot A(10) \quad 20 \cdot A(24))^{T} = \begin{pmatrix} 314.159 \\ 0 \\ 628.319 \\ 9.048 \times 10^{3} \end{pmatrix}$$

dsmax := max(ds) dsmax = 295


As_tot :=
$$\sum_{j=1}^{j_s} As_j = 9.99 \times 10^3$$
 mm2

total mild reinforcement area

$$\frac{\text{As_tot}}{2400.300} = 0.014$$

Discretisation of the cross-section

9.3 Material constitutive laws employed in the calculation

9.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{\text{Htot}} b(y) \, dy \qquad Ac = 7.92 \times 10^{5}$$

 $\rho s := \frac{As_tot}{Ac} = 0.013$

geometric ratio for longitudinal mild reinforcement

 $ptot := \frac{As_tot}{Ac} = 0.013$ total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy \qquad \text{Syc} = 1.307 \times 10^{8}$$

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 165$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 \, dy \qquad \text{Ixo_cls} = 7.187 \times 10^9$$

Idealisation coefficients (elastic)

$$ns := \frac{Es}{Ecm1} \qquad ns = 5.512 \qquad nc := \frac{Ecm2}{Ecm1} = 0.868$$

Area of ideal cross-section

Aid :=
$$\int_{0}^{265} \operatorname{nc} b(y) \, dy + \int_{266}^{\text{Htot}} b(y) \, dy + (ns - 1) \cdot \sum_{j=1}^{js} \operatorname{As}_{j}$$
 Aid = 7.504 × 10⁵

First moment of the reinforced concrete area

Sxid := Ac·yG + (nc - 1)
$$\cdot \int_{0}^{265} b(y) \cdot y \, dy + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j) = 1.324 \times 10^8$$
 Sxid = 1.324×10^8

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 176.429

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^2 dy - \int_{0}^{265} b(y) \cdot (y - \text{Yid})^2 dy - \sum_{j=1}^{js} \left[\text{As}_j \cdot (ds_j - \text{Yid})^2 \right] = 2.201 \times 10^9$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$
 Ixoidcls2 := $nc \cdot \int_0^{265} b(y) \cdot (y - Yid)^2 dy$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidcls2 Ixo_id =
$$7.27 \times 10^9$$
 mm⁴ $\frac{Ixo_id}{Ixo_cls} = 1.011$

9.5 Loads

LOADS

interaxis := 2400 mm

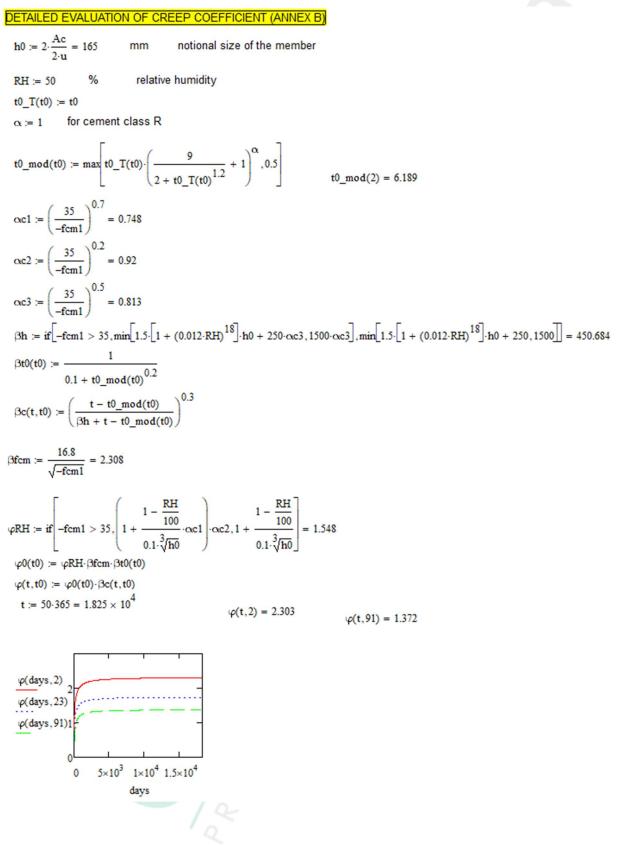
- $g1 := Ac \cdot 0.000025 = 19.8 \quad kN/m \qquad \text{dead load from self-weight}$ $g2 := 2 \cdot \frac{\text{interaxis}}{1000} = 4.8 \qquad kN/m \qquad \text{nonstructural dead load}$ $q := 3 \cdot \frac{\text{interaxis}}{1000} = 7.2 \qquad kN/m \qquad \text{live load}$
- L:= 8850 mm calculation length (span between supports)
- ψ2 := 0.3 non-contemporaneity factor for quasi-permanent load combination
- ψ1 := 0.5 non-contemporaneity factor for frequent load combination

$$Mq_SLSg1(x) := (g1) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$SLS bending moment distribution from self-weight load$$

$$Mq_SLSg2(x) := (g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$SLS bending moment distribution from nonstructural dead load$$


$$Mq_SLSq(x) := (q \cdot \psi2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$$

$$SLS bending moment distribution from nonstructural dead load$$

9.6 Time-dependent behaviour

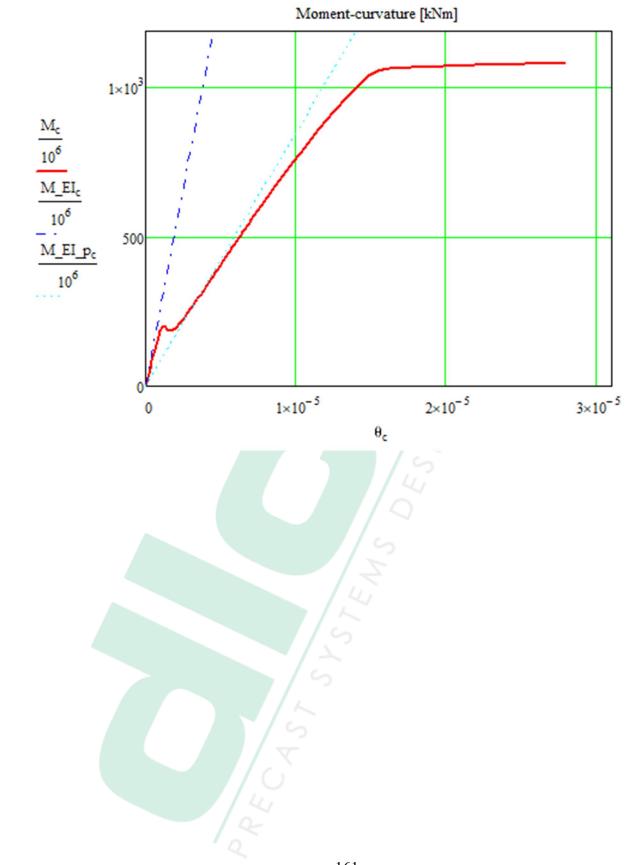
Shrinkage

 $\beta RH := 1.55 \left[1 - \left(\frac{RH}{100} \right)^3 \right] = 1.356$ fcmo := 10 MPa $\alpha ds1_2 := 4$ αds1_1 := 6 for cement class N for cement class R $\alpha ds2_2 := 0.12$ αds2_1 := 0.11 $\varepsilon cd_0_1 := 0.85 \cdot \left\lfloor (220 + 110 \cdot \alpha ds1_1) \cdot e^{-\alpha ds2_1 \cdot \frac{fcm1}{fcmo}} \right] \cdot 10^{-6} \cdot \beta RH = 1.817 \times 10^{-3}$ - ads2_2 fcmo 10^{-6} · β RH = 1.131×10^{-3} $\varepsilon cd_0_2 := 0.85 \cdot (220 + 110 \cdot \alpha ds_1_2) \cdot e$ kh := 0.89 for h0=175 mm ε cd1 := kh $\cdot \varepsilon$ cd_0_1 = 1.617 × 10⁻³ $\varepsilon cd2 := kh \cdot \varepsilon cd_0 = 1.006 \times 10^{-3}$ ε cal := 2.5·(-fck1 - 10)·10⁻⁶ = 8.75 × 10⁻⁵ $\varepsilon ca2 := 2.5 \cdot (-fck2 - 10) \cdot 10^{-6} = 3.75 \times 10^{-5}$ $\varepsilon cs1 := \varepsilon cd1 + \varepsilon ca1 = 1.705 \times 10^{-3}$ $\varepsilon cs2 := \varepsilon cd2 + \varepsilon ca2 = 1.044 \times 10^{-3}$

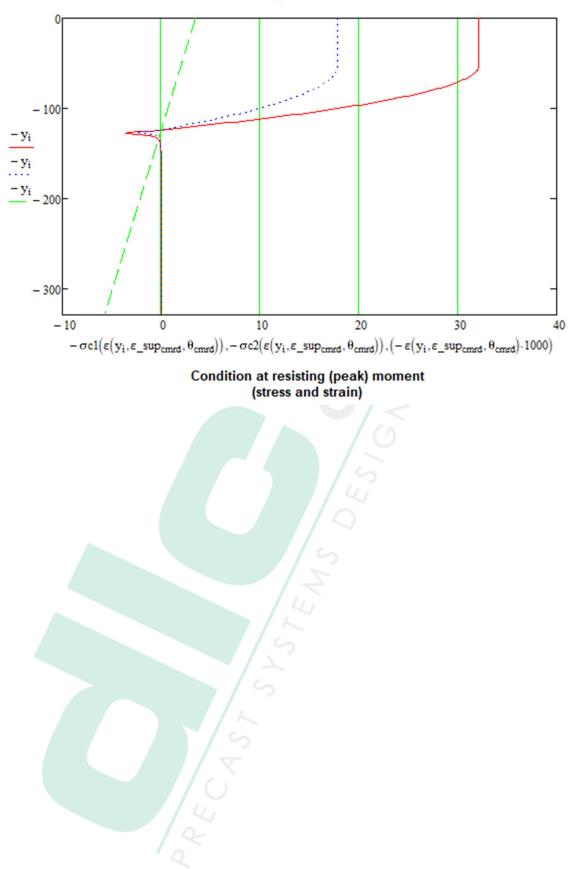
it is assumed that the shrinkage effect is compensated by the time slot between casting of the precast girder and the slab and proper expansive admixtures

9.7 Non-linear moment-curvature diagram

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)


$$\begin{split} & \underset{i=1}{\overset{\mathsf{NM}}{\longrightarrow}} (\varepsilon_\sup,\theta) := \sum_{i=1}^{265} \left(\sigma c2 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot b \Big(y_i \Big) \cdot \Delta y \Big) + \sum_{i=266}^{\mathsf{Htot}} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big(b \Big(y_i \Big) \Big) \cdot \Delta y \Big] + \sum_{j=1}^{js} \left(\sigma s \Big(\varepsilon \Big(ds_j, \varepsilon_\sup,\theta \Big) \Big) \cdot As_j \Big) \right) \\ & \underset{i=1}{\overset{\mathsf{NM}}{\longrightarrow}} (\varepsilon_\sup,\theta) := \sum_{i=1}^{265} \Big[\sigma c2 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot b \Big(y_i \Big) \cdot \Delta y \cdot \Big(y_i - yG \Big) \Big] + \sum_{i=266}^{\mathsf{Htot}} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big(b \Big(y_i \Big) \Big) \cdot \Delta y \cdot \Big(y_i - yG \Big) \Big] + \sum_{i=266}^{js} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big(b \Big(y_i \Big) \Big) \cdot \Delta y \cdot \Big(y_i - yG \Big) \Big] + \sum_{j=1}^{js} \Big[\sigma s \Big(\varepsilon \Big(ds_j, \varepsilon_\sup,\theta \Big) \Big) \cdot As_j \cdot \Big(ds_j - yG \Big) \Big] \Big] \\ & \underset{i=266}{\overset{\mathsf{NM}}{\longrightarrow}} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big(b \Big(y_i \Big) \Big) \cdot \Delta y \cdot \Big(y_i - yG \Big) \Big] + \sum_{j=1}^{js} \Big[\sigma c1 \Big(\varepsilon \Big(ds_j, \varepsilon_\sup,\theta \Big) \Big) \cdot As_j \cdot \Big(ds_j - yG \Big) \Big] \\ & \underset{i=266}{\overset{\mathsf{NM}}{\longrightarrow}} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big) \cdot \Big] \\ & \underset{i=266}{\overset{\mathsf{NM}}{\longrightarrow}} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big] + \sum_{j=266}^{js} \Big[\sigma c1 \Big(\varepsilon \Big(y_j, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big] \Big] \\ & \underset{i=266}{\overset{\mathsf{NM}}{\longrightarrow}} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big] + \sum_{j=266}^{js} \Big[\sigma c1 \Big(\varepsilon \Big(y_i, \varepsilon_\sup,\theta \Big) \Big) \cdot \Big] + \sum_{j=1}^{js} \Big[\sigma c1 \Big(\varepsilon \Big(y_j, \varepsilon_\sup,\theta \Big) \Big] \Big] \\ & \underset{i=266}{\overset{\mathsf{NM}}{\longrightarrow}} \Big] \Big]$$

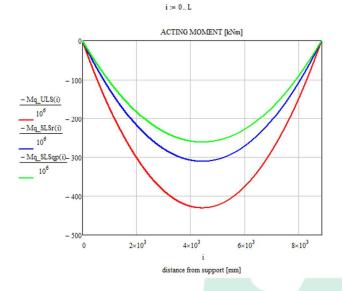
Design external axial load NS := -0



 $Mq_SLSf(x) := (g1 + g2 + \psi 1 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$

Mq_SLSqp(x) := $(g1 + g2 + \psi 2 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$

 $Mg SLSg2(x) := (g1 + g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$


9.8 Bending moment distribution

$\gamma g1 := 1.35$	partial safety coefficient for self-we	ight structural loads
γg2 := 1.35	partial safety coefficient for non-str	uctural certain dead loads
γq := 1.5	partial safety coefficient for live load	ds or non-structural uncertain dead loads
$Mq_ULS(x) := (g1 \cdot \gamma)$	$g_{g1} + g_{2}\gamma g_{2} + q_{\gamma}\gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^{2}}{2}\right)$	moment distribution at Ultimate Limit moment distribution at Serviceability Li
$Mq_SLSr(x) := (g1 -$	$(+ g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Serviceability Li

moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q

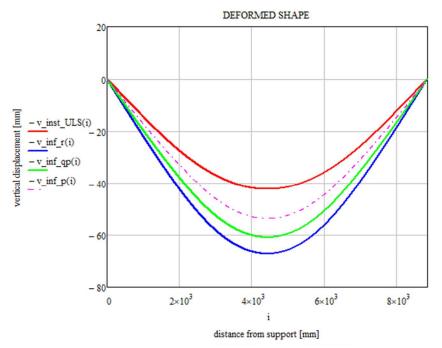
moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q

moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q

9.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

 $v_{inf_p(x)} \coloneqq v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 14) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (1 + \varphi(365 \cdot 50, 23))$


deflection profile at 50 years including creep for permanent load combination

 $v_{inf}_{qp(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 14) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (1 + \varphi(365 \cdot 50, 91)) + v_{SLSqp$

deflection profile at 50 years including creep for quasi permanent load combination

 $v_inf_r(x) := v_SLSg1(x) \cdot (\varphi(365 \cdot 50, 14) - \varphi(365 \cdot 50, 23)) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSr(x) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 91) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 91) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 91) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSqp(x) + v_SLSqp$

deflection profile at 50 years including creep for rare load combination

SLS DEFLECTION CONTROL - RIGOROUS METHOD (§7.4.3)

camber := 35 mm > $\frac{-L}{250} = -35.4$ CHECK maximum camber imposed camber by mould shaping $v_inf_r(\frac{L}{2}) - camber = 32.208$ < $\frac{L}{250} = 35.4$ CHECK maximum deflection

value calculated from differential equations above

SLS STRESS CONTROL (§7.2)

k1 := 0.6 k2 := 0.45

k3 := 0.8

k4 := 1

1.5 = 0.75

$\sigma cpf_bot(x) := \frac{Mq_SLSf(x) \cdot (Htot - Yid)}{Ixo_id}$	$\sigma cpf_bot\left(\frac{L}{2}\right) = 5.832$	<	fctm1 = 3.795	CHECK
elastic stress of bottom concrete chore			if not -> cracked	

= 67.544

$$\sigma sf_bot(x) := 15 \cdot \left[\frac{Mq_SLSf(x) \cdot (ds_{js} - Yid)}{Ixo_id} \right] \qquad \sigma sf_bot\left(\frac{L}{2} \right)$$

creep stress of bottom reinforcement layer for frequent load combination

$$\sigma cpr_bot(x) := \frac{Mq_SLSr(x) \cdot (Htot - Yid)}{Ixo_id} \qquad \sigma cpr_bot\left(\frac{L}{2}\right) = 6.577 \qquad \leq \quad fctm1 = 3.795$$

elastic stress of bottom concrete chord for rare load combination

$$\sigma \operatorname{cpr_top}(x) := \frac{\operatorname{nc} \cdot \operatorname{Mq}_{2} \operatorname{SLSr}(x) \cdot (-Yid)}{\operatorname{Ixo}_{-id}} \qquad \sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -6.554 \qquad > \qquad k1 \cdot \operatorname{fck2} = -15 \qquad \text{CHECK}$$

elastic stress of top concrete chord for rare load combination

$$\sigma cpr_s(x) := 15 \cdot \left[\frac{Mq_SLSr(x) \cdot (ds_{js} - Yid)}{Ixo_i d} \right] \qquad \sigma cpr_s\left(\frac{L}{2}\right) = 76.167 \qquad \leq k3 \cdot fsk = 400 \qquad \text{CHECK}$$

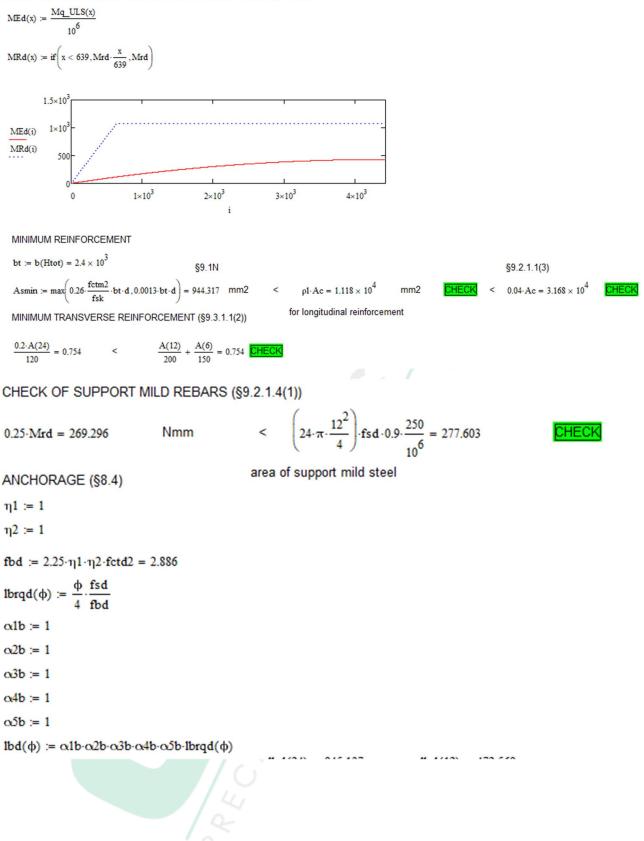
creep stress of bottom mild steel for rare load combination

SLS CRACK CONTROL (§7.3) c_act := Htot - ds. - 10 = 25 ksurf := min $\left(1.5, \frac{c_act}{10 + cmin dur s}\right) = 1.25$ mm wlim_cal := 0.2 k1c := 0.8 $\phi := 24$ k2c := 0.5 k3c := 3.4 k4c := 0.425 cover := Htot - $\frac{\Phi}{2}$ - ds_{is} = 23 Aceff := b(Htot) $\cdot \min \left[2.5 \cdot \left(\text{Htot} - \text{ds}_{js} \right), \frac{\text{Htot} - \text{Yn}_n}{3}, \frac{\text{Htot}}{2} \right] = 1.907 \times 10^5$ $\rho peff := \frac{As_{js} + As_{js-1}}{\Delta coff} = 0.051$ srmax := k3c·cover + $\frac{k1c\cdot k2c\cdot k4c\cdot \phi}{\rho peff}$ = 158.595 NOTE : 0.6 for sustained loading kt := 0.4fcteff := fctm1 = 3.795 $\varepsilon \operatorname{sm}_{\varepsilon} \operatorname{cm} := \max \left[\frac{\sigma \operatorname{sf_bot}\left(\frac{L}{2}\right) - \operatorname{kt} \cdot \frac{\operatorname{fcteff}}{\rho \operatorname{peff}} \cdot \left(1 + \frac{\operatorname{Es}}{\operatorname{Ecm1}} \cdot \rho \operatorname{peff}\right)}{\operatorname{Es}}, 0.6 \cdot \frac{\sigma \operatorname{sf_bot}\left(\frac{L}{2}\right)}{\operatorname{Fs}} \right] = 2.026 \times 10^{-4}$ $wk := srmax \cdot \varepsilon sm_\varepsilon cm = 0.032$ wlim_cal = 0.2CHECK 9.10 ULS checks ULS BENDING-AXIAL CONTROL (§6.1) $\frac{Mq_ULS\left(\frac{L}{2}\right)}{1} = 430.872$ $Mrd = 1.077 \times 10^{3}$ CHECK resisting moment calculated from moment-curvature diagram above

ULS SHEAR CONTROL (§6.2)

$$Vq_{\perp}UL8(x) := \left[(B^{1} \gamma g^{1} + g^{2} \gamma g^{2} + q \gamma q) \cdot (\frac{1}{2} - x)\right]$$
 shear distribution at Ultimate Limit State (ULS)
 $d := ds_{j_{3}} = 295$ mm effective depth
VEd = $Vq_{\perp}UL8(d) = 1.818 \times 10^{5}$ N maximum shear at effective depth from support
bw := 2400 mm web width
 $z := 0.9 \cdot d = 265.5$ conventional resultant lever arm
MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT
 $\int_{p_{1}}^{\frac{5}{2}} \frac{As_{j}}{bw \cdot d} = 0.014$ reinforcement ratio
 $\sigma cp(x) := 0$ MPa axial load induced by prestressing
 $kv := min(1 + \frac{200}{d}, 2) = 1.678$
 $klv := 0.015$
 $Crdc := \frac{0.18}{\gamma cpcred} = 0.129$
 $vmin := 0.035 kv^{\frac{3}{2}} \cdot (-fck2)^{\frac{1}{2}} = 0.38$ §6.3N $bw \cdot d_{-}(crdc \cdot kv)$
 $VRdc(x) := max[Crdc kv \cdot (100 \cdot p1 - fck2)^{\frac{1}{3}} + k1v \cdot \sigma cp(x)] \cdot bw \cdot d_{-}(vmin + k1v \cdot \sigma cp(x)) \cdot bw \cdot d_{-}$
 $Vrd(x) := VRdc(x)$
 $\frac{vq_{\perp}UL8(0)}{vrd(0)} \frac{4 \times 10^{5}}{2 \times 10^{5}} \frac{4 \times 10^{5}}{4 \times 10^{5}}$

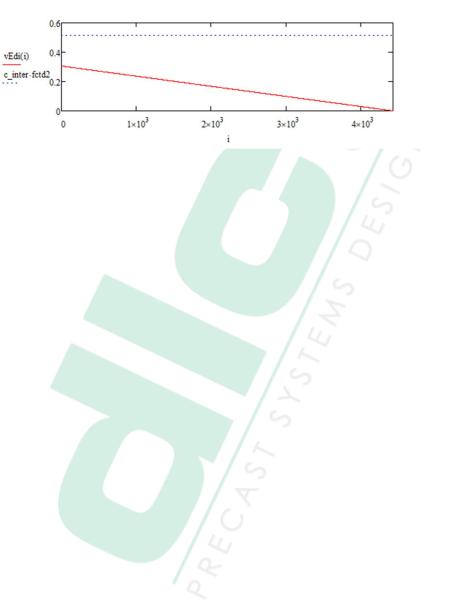
i


NOTE: there is no need for transverse reinforcement

0

MOMENT DIAGRAM ACCOUNTING FOR MILD STEEL REBAR ANCHORAGE

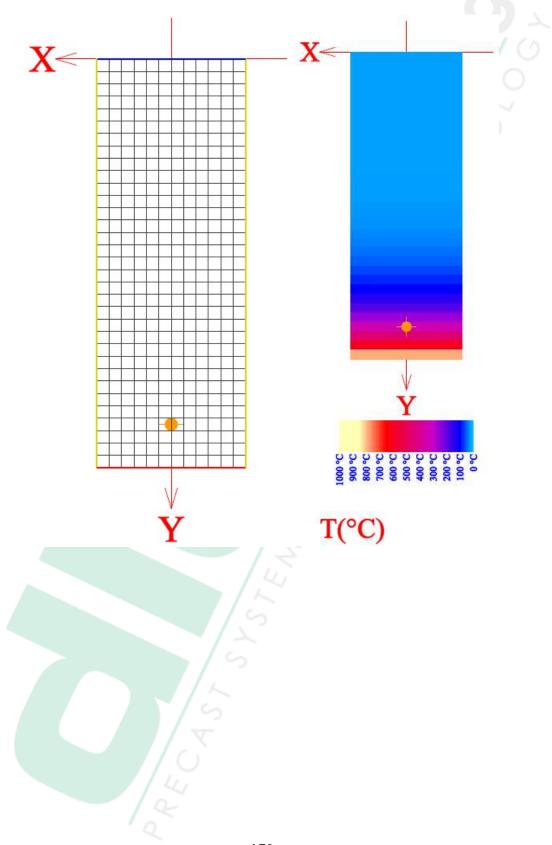
INTERFACE BETWEEN CONCRETES CAST AT DIFFERENT TIME (§6.2.5)


βinter := 1 bi := 2400 mm $vEdi(x) := \beta inter \cdot \frac{Vq_ULS(x)}{\cdot}$ vEdi(0) = 0.306c_inter := 0.4 c_inter-fctd2 = 0.513 μ := <mark>0.4</mark> $cinter := 75 \cdot \frac{\pi}{180} = 1.309$ rad σn := 0 Ainter := $bi \cdot 265 = 6.36 \times 10^5$ $\rho := \frac{10 \cdot A(6)}{Ainter} = 4.446 \times 10^{-4}$

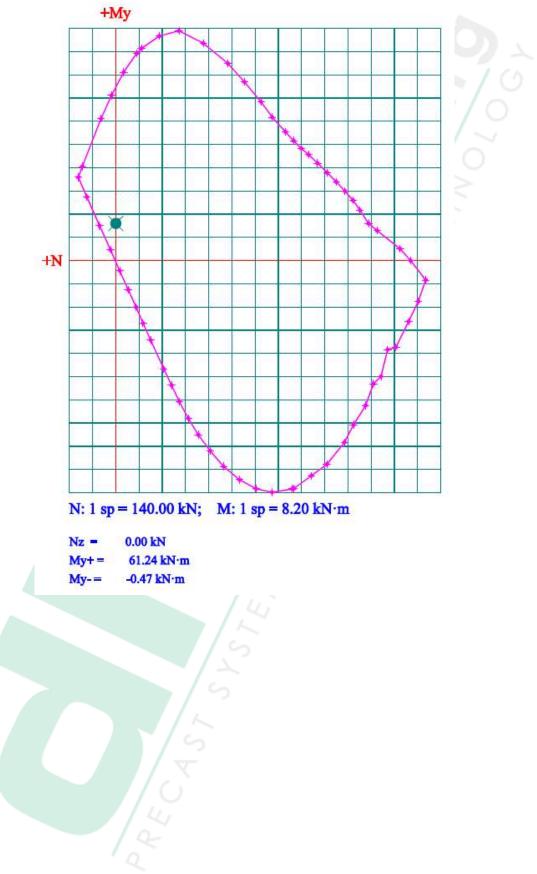
$$\nu := 0.6 \cdot \left(1 - \frac{-fck^2}{250}\right) = 0.54$$

 $vRdi := min[c_inter \cdot fctd2 + \mu \cdot \sigma n + \rho \cdot fsd \cdot (\mu \cdot sin(ointer) + cos(ointer)), 0.5 \cdot \nu \cdot -fcd2] = 0.643$ MPa >

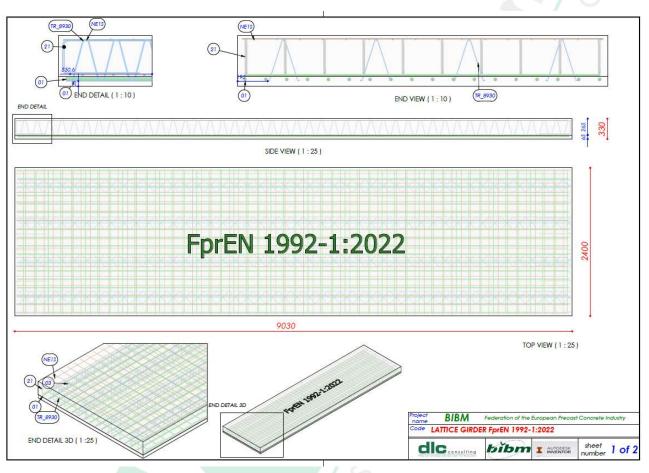
vEdi(0) = 0.306 MPa CHECK



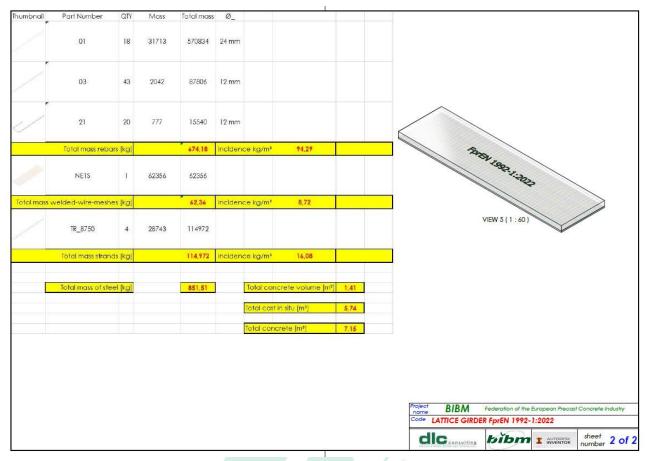
9.11 Fire checks



20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
20	20	20	20	20	20	20	20	20	20	20	20	
21	21	21	21	21	21	21	21	21	21	21	21	
21	21	21	21	21	21	21	21	21	21	21	21	
22	22	22	22	22	22	22	22	22	22	22	22	
23	23	23	23	23	23	23	23	23	23	23	23	
25	25	25	25	25	25	25	25	25	25	25	25	
27	27	27	27	27	27	27	27	27	27	27	27	
31	31	31	31	31	31	31	31	31	31	31	31	
36	36	36	36	36	36	36	36	36	36	36	36	
43	43	43	43	43	43	43	43	43	43	43	43	
52	52	52	52	52	52	52	52	52	52	52	52	
65	65	65	65	65	65	65	65	65	65	65	65	
82	82	81	81	81	81	81	81	81	81	81	81	
100	100	100	100	100	100	100	100	100	100	100	100	
140	140	140	140	140	140	140	140	140	140	140	140	
188	188	188	188	188	188	188	188	188	188	188	188	
								252				
_	_			_	_	-	_	335	_			
_	_	-	-	-	-	-	_	446	-	_		
592	592	592	592	592	592	592	592	592	592	592	592	
786	786	786	786	786	786	786	786	786	786	786	786	



10 Lattice girder element – FprEN1992-1:2022


10.1 Shop drawings

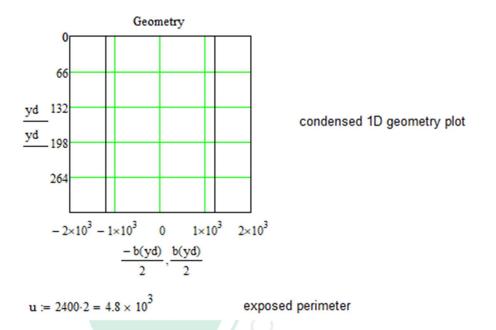
10.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

$$y_{tr} := (0 \ 330)^{T}$$


Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b_tr} &:= (2400 \ 2400)^T \\ \textbf{r_circ} &:= 0 \quad \text{radius of central void pipe} \\ \textbf{x_circ}(y) &:= 2 \sqrt{\textbf{r_circ}^2 - \left(y - \frac{\text{Htot}}{2}\right)^2} \\ \textbf{b_lin}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) \\ \textbf{b_circ}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) - \textbf{x_circ}(y) \\ \textbf{b}(y) &:= \text{if} \left[y \leq \left(\frac{\text{Htot}}{2} + \textbf{r_circ} \right) \land y \geq \frac{\text{Htot}}{2} - \textbf{r_circ}, \texttt{b_circ}(y), \texttt{b_lin}(y) \right] \end{split}$$

<u>yd</u> := 0.. Htot

bibm

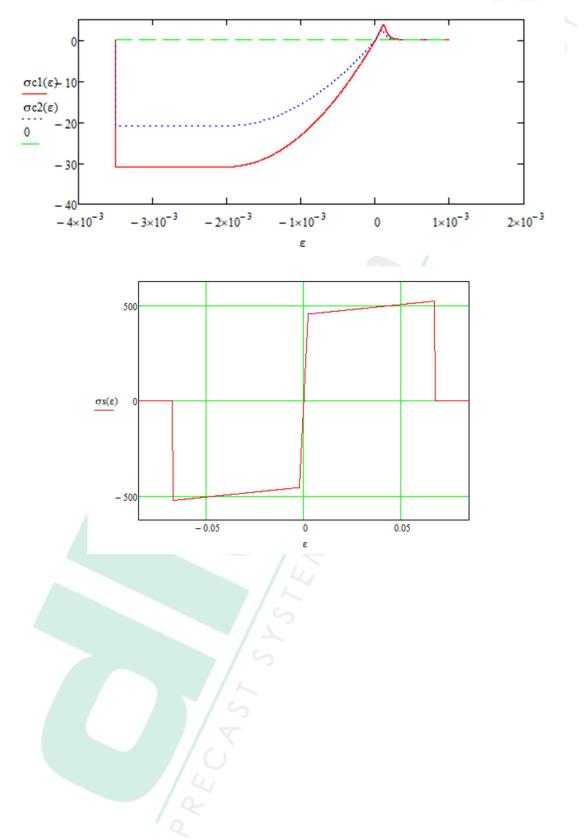
Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (30 \ 255 \ 280 \ 295)^T$

As :=
$$(4 \cdot A(10) \quad 0 \cdot A(10) \quad 8 \cdot A(10) \quad 18 \cdot A(24))^{T} = \begin{pmatrix} 314.159 \\ 0 \\ 628.319 \\ 8.143 \times 10^{3} \end{pmatrix}$$


dsmax := max(ds) dsmax = 295

$$As_{tot} := \sum_{j=1}^{J^{s}} As_{j} = 9.085 \times 10^{3}$$

 $\frac{As_tot}{2400.300} = 0.013$

10.3 Material constitutive laws employed in the calculation

10.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{\text{Htot}} b(y) \, dy \qquad Ac = 7.92 \times 10^{5}$$

$$As \text{ tot}$$

 $\rho s := \frac{As_tot}{Ac} = 0.011$

geometric ratio for longitudinal mild reinforcement

 ρ tot := $\frac{As_tot}{Ac} = 0.011$ total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy \qquad \text{Syc} = 1.307 \times 10^{8}$$

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 165$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 \, dy \qquad \text{Ixo_cls} = 7.187 \times 10^9$$

Idealisation coefficients (elastic)

$$ns := \frac{Es}{Ecm1} \qquad ns = 5.605 \qquad nc := \frac{Ecm2}{Ecm1} = 0.854$$

Area of ideal cross-section

Aid :=
$$\int_{0}^{265} \operatorname{nc} b(y) \, dy + \int_{266}^{\text{Htot}} b(y) \, dy + (ns - 1) \cdot \sum_{j=1}^{js} \operatorname{As}_{j}$$
 Aid = 7.385 × 10⁵

First moment of the reinforced concrete area

Sxid := Ac·yG + (nc - 1)
$$\cdot \int_{0}^{265} b(y) \cdot y \, dy + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j) = 1.303 \times 10^8$$
 Sxid = 1.303 × 10⁸

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 176.411

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^2 dy - \int_{0}^{265} b(y) \cdot (y - \text{Yid})^2 dy - \sum_{j=1}^{js} \left[\text{As}_j \cdot (ds_j - \text{Yid})^2 \right] = 2.214 \times 10^9$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$
 Ixoidcls2 := $nc \cdot \int_0^{265} b(y) \cdot (y - Yid)^2 dy$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidcls2
$$Ixo_id = 7.157 \times 10^9 \text{ mm}^4 \frac{Ixo_id}{Ixo_cls} = 0.996$$

10.5 Loads

LOADS

interaxis := 2400 mm

$g1 := Ac \cdot 0.000025 = 19.8$	kN/m	dead load from self-weight
$g2 := 2 \cdot \frac{\text{interaxis}}{1000} = 4.8$	kN/m	nonstructural dead load
$q := 3 \cdot \frac{\text{interaxis}}{1000} = 7.2$	kN/m	live load

L:= 8850 mm calculation length (span between supports)

ψ2 := 0.3 non-contemporaneity factor for quasi-permanent load combination

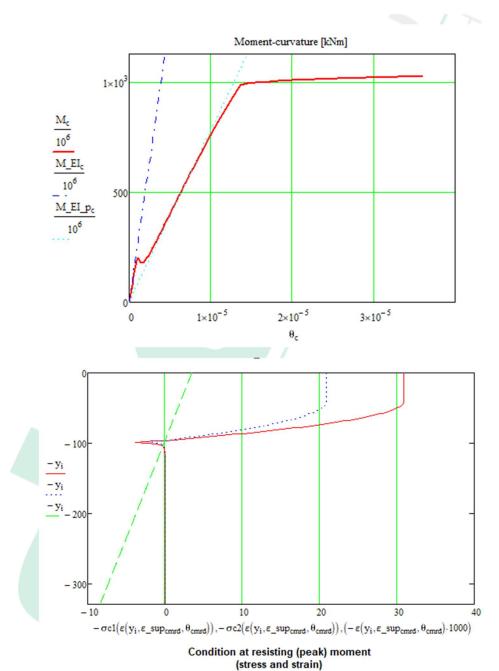
ψ1 := 0.5 non-contemporaneity factor for frequent load combination

Mq_SLSg1(x) := (g1) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from self-weight load
Mq_SLSg2(x) := (g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from nonstructural dead load
Mq_SLSq(x) := $(q \cdot \psi 2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from live load

10.6 Time-dependent behaviour

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

$$\begin{split} & \ln n \geq 2 \frac{Ac}{u} = 330 \\ & RH = 50 \\ & (0)_{adj}(0) \geq 10 \\ & (Bbc_{a}fcm1) = \frac{1}{(-fcm1)^{0.7}} = 0.112 \quad (Bbc_{a}t_{a}f0(t,t0) \geq \ln \left[\left(\frac{30}{10_{a}adj(t0)} + 0.035 \right)^{2} \cdot (t-t0) + 1 \right] \\ & (Bbc_{a}fcm1) = \frac{412}{(-fcm1)^{1.4}} = 1.588 \\ & (Bbc_{a}f0(t0) \geq \frac{1}{0.1 + t0_{a}adj(t0)} = 0.724 \\ & (Bbc_{a}f0(t0) \geq \frac{1}{0.1 + t0_{a}adj(t0)} = 0.724 \\ & (Bbc_{a}f0(t0) \geq \frac{1}{0.1 + t0_{a}adj(t0)} = 0.724 \\ & (Bbc_{a}f0(t0) \geq \frac{1}{2.3 + \frac{3.5}{\sqrt{10_{a}adj(t0)}}} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{2.3 + \frac{3.5}{\sqrt{10_{a}adj(t0)}}} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{0.1 + t0_{a}adj(t0)^{0.2}} \\ & (Ch) \geq \frac{1}{2.3 + \frac{3.5}{\sqrt{10_{a}adj(t0)}}} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{2.3 + \frac{3.5}{\sqrt{10_{a}adj(t0)}}} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{0.1 + t0_{a}adj(t0)} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{2.3 + \frac{3.5}{\sqrt{10_{a}adj(t0)}}} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{2.3 + \frac{1}{\sqrt{10}}} \\ & (Bbc_{a}f0(t0) \geq \frac{1}{2.3$$


10.7 Non-linear moment-curvature diagram

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

$$\begin{split} & \underset{i=1}{\overset{\text{NM}}{\longrightarrow}} (\varepsilon_\sup,\theta) := \sum_{i=1}^{265} \left(\sigma c2 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot b \big(y_i \big) \cdot \Delta y \big) + \sum_{i=266}^{Htot} \left[\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \big(b \big(y_i \big) \big) \cdot \Delta y \big] + \sum_{j=1}^{js} \left(\sigma s \big(\varepsilon \big(ds_j, \varepsilon_\sup,\theta \big) \big) \cdot As_j \big) \right) \\ & \underset{i=1}{\overset{\text{M}}{\longrightarrow}} M(\varepsilon_\sup,\theta) := \sum_{i=1}^{265} \left[\sigma c2 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot b \big(y_i \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] + \sum_{i=266}^{Htot} \left[\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \big(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] + \sum_{i=266}^{js} \left[\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \big(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] + \sum_{j=1}^{js} \left[\sigma s \big(\varepsilon \big(ds_j, \varepsilon_\sup,\theta \big) \big) \cdot As_j \cdot \big(ds_j - yG \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \big) \cdot \big(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] + \sum_{j=1}^{js} \left[\left(\sigma s \big(\varepsilon \big(ds_j, \varepsilon_\sup,\theta \big) \big) \cdot As_j \cdot \big(ds_j - yG \big) \right) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \big) \cdot \big(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] + \sum_{j=1}^{js} \left[\left(\sigma s \big(\varepsilon \big(ds_j, \varepsilon_\sup,\theta \big) \big) \right) \cdot As_j \cdot \big(ds_j - yG \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \big) \cdot \left(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \right) \cdot \left(b \big(y_i \big) \right) \cdot \Delta y \cdot \big(y_i - yG \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \left(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \left(b \big(y_i \big) \big) \cdot \Delta y \cdot \big(y_i - yG \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \cdot \left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon_\sup,\theta \big) \big) \right] \right] \\ & \underset{i=266}{\overset{\text{M}}{\longrightarrow}} \left[\left(\sigma c1 \big(\varepsilon \big(y_i, \varepsilon \big) \big) \right] \right]$$

Design external axial load

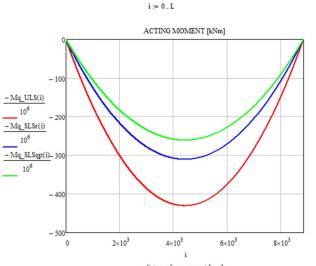
NS := -0

a o o o ana o

10.8 Bending moment distribution

 $Mq_SLSf(x) := (g1 + g2 + \psi 1 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$

 $Mq_SLSqp(x) := (g1 + g2 + \psi 2 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$


 $Mq_{sLSg2}(x) := (g1 + g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$

γg1 := 1.35	partial safety coefficient for self-we	eight structural loads
γg2 := 1.35	partial safety coefficient for non-st	ructural certain dead loads
γq := 1.5	partial safety coefficient for live loa	ads or non-structural uncertain dead loads
$Mq_ULS(x) := (g1 \cdot \gamma_i)$ $Mq_SLSr(x) := (g1 + i)$	$g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ $g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	moment distribution at Ultimate Limit Stat

moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q

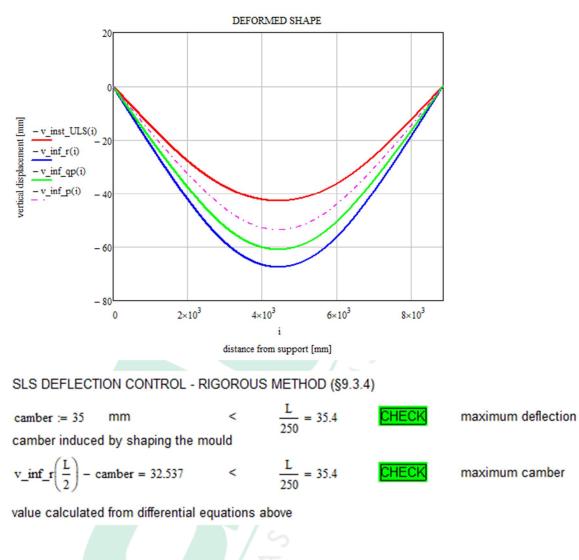
moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q

moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q

10.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

 $v_{inf_p(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 14) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (1 + \varphi(365 \cdot 50, 23))$


deflection profile at 50 years including creep for permanent load combination

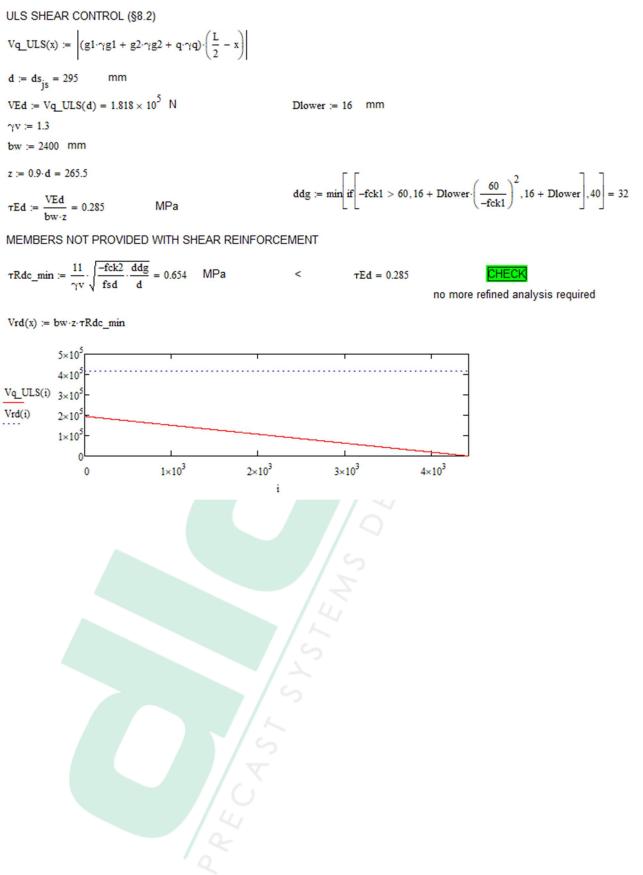
 $v_{inf_qp(x)} \coloneqq v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 14) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (1 + \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)$

deflection profile at 50 years including creep for quasi permanent load combination

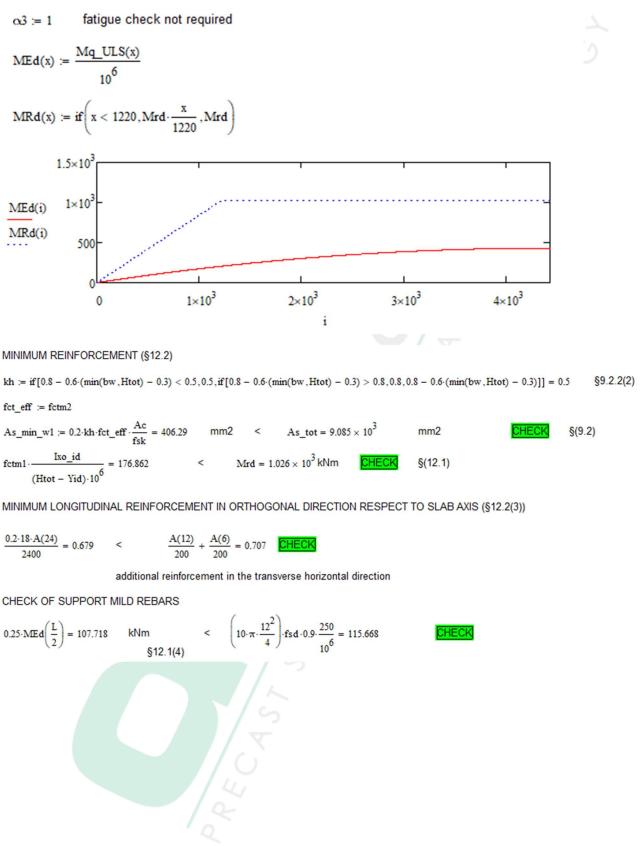
 $v_{inf_r(x)} \coloneqq v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 14) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (\varphi(365 \cdot 50, 91) + v_{SLSr(x)} +$

deflection profile at 50 years including creep for rare load combination

SLS STRESS CONTROL (§9.2.1) k1 := 0.6 rsup := 1.05 k2 := 0.45 rinf := 0.95 k3 := 0.8 k4 := 1 k5 := 0.8 0.75 in EN1992-1-1:2002 NOTE: the denomination of the allowable stress coefficients following k factors was kept similar to that of EN1992-1-1:2002 $\sigma cpf_bot(x) := \frac{Mq_SLSf(x) \cdot (Htot - Yid)}{Ixo_id}$ $\sigma cpf_bot\left(\frac{L}{2}\right) = 5.925$ < fctm1 = 3.795CHECK elastic stress of bottom concrete chord for frequent load combination if not -> cracked $\left[\frac{Mq_SLSf(x) \cdot \left(ds_{js} - Yid\right)}{Ixo_id}\right]$ σ sf_bot(x) := 15 - $\sigma sf_bot\left(\frac{L}{2}\right) = 68.62$ elastic stress of bottom mild steel layer for frequent load combination $\sigma cpr_bot(x) := \frac{Mq_SLSr(x) \cdot (Htot - Yid)}{Mq_SLSr(x) \cdot (Htot - Yid)}$ $\sigma \operatorname{cpr_bot}\left(\frac{L}{2}\right) = 6.681$ fctm1 = 3.795< Ixo_id elastic stress of bottom concrete chord for rare load combination $\sigma cpr_top(x) := \frac{nc \cdot Mq_SLSr(x) \cdot (-Yid)}{Ixo_id}$ $\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -6.553$ CHECK $k1 \cdot fck2 = -15$ $0.4 \cdot \text{fcm2} = -13.2$ elastic stress of top concrete chord for rare load combination $\left[Mq_SLSr(x) \cdot \left(ds_{js} - Yid \right) \right]$ $\sigma \operatorname{cpr_s}\left(\frac{L}{2}\right) = 77.38$ $\sigma cpr_s(x) := 15$ < $k3 \cdot fsk = 400$ CHECK Ixo id creep stress of bottom mild steel for rare load combination



SLS CRACK CONTROL (§9.2.3)



MOMENT DIAGRAM ACCOUNTING DUE TO SHEAR RESISTING MECHANISM (§12.3.2)

ANCHORAGE (§11.4)

klb := 50 kcp := 1 for good bond conditions $n\sigma := \frac{3}{2}$ cs := 50 cx := 75 cy := 40 cd(12) = 25

$$1bd2(\phi) := \max\left[klb \cdot kcp \cdot \phi \cdot \left(\frac{fsd}{435}\right)^{n\sigma} \cdot \left(\frac{25}{-fck2}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1.5 \cdot \phi}{cd(\phi)}\right)^{\frac{1}{2}}, 10 \cdot \phi\right]$$

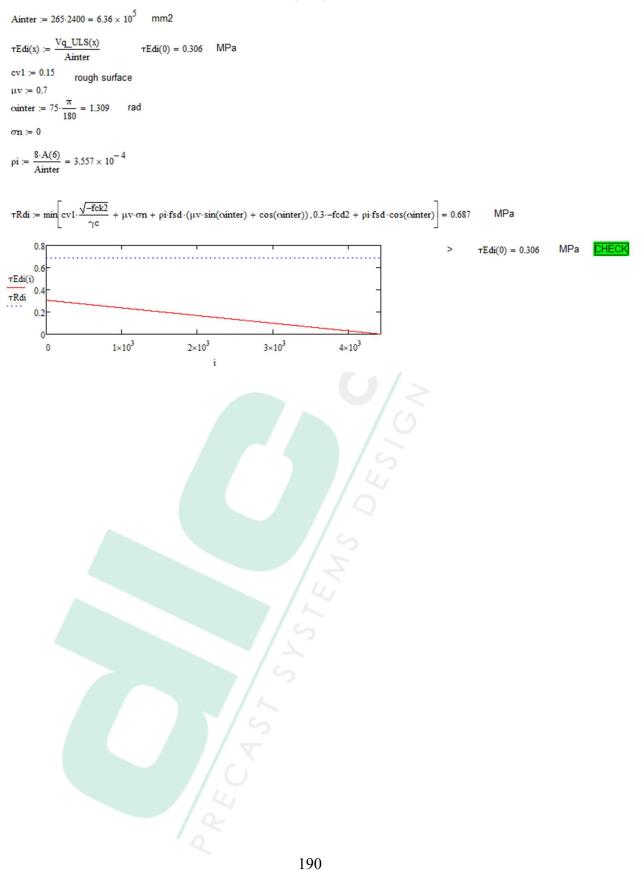
1bd2(16) = 777.239

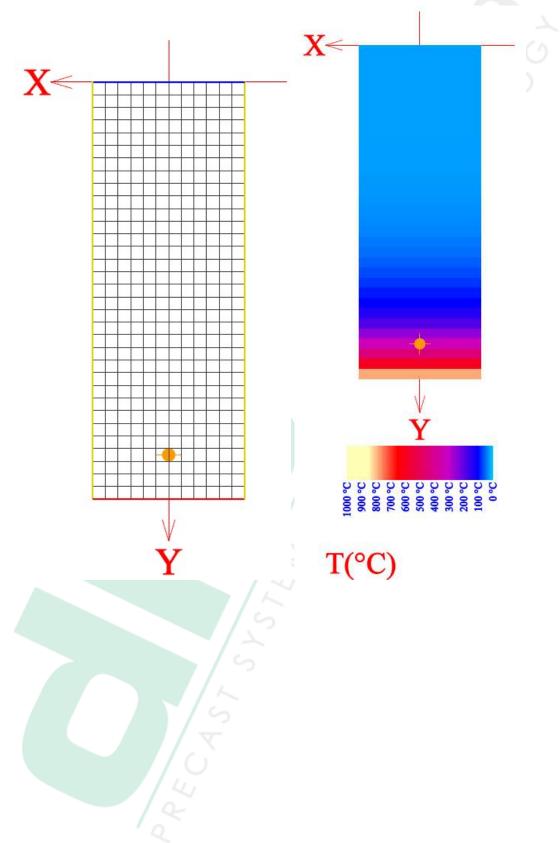
length of straight part for 90° bent bars $1b90(\phi) := max(70, 1bd2(\phi) - 15 \cdot \phi, 10 \cdot \phi)$

1b90(12) = 278.67 1b90(8) = 98.105

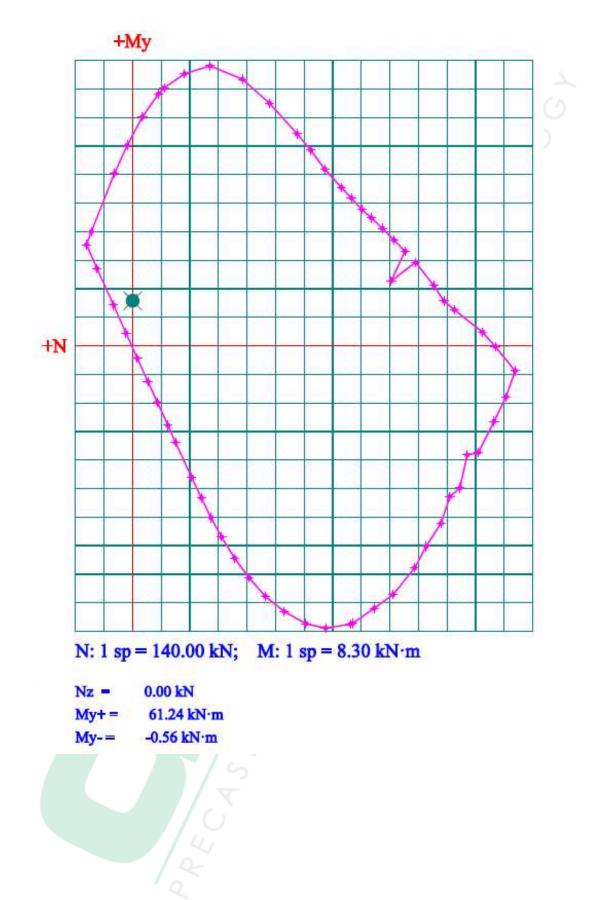
length of straight part for 135° bent bars (stirrups)

 $1b135(\phi) := max(50, 1bd2(\phi) - 15 \cdot \phi, 5 \cdot \phi)$

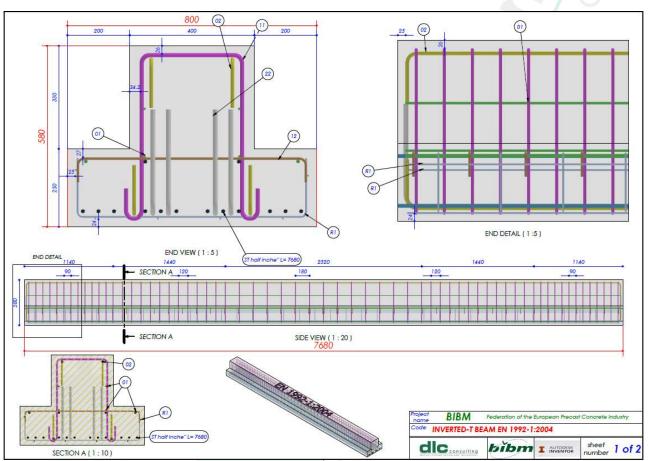

1b135(12) = 278.67 1b135(8) = 98.105


INTERFACE BETWEEN CONCRETES CAST AT DIFFERENT TIME (§8.2.6)

10.11 Fire checks



_															
\langle	20	20	20	20	20	20	20	20	20	20	20	20		100	
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	20	20	20	20	20	20	20	20	20	20	20	20			
	21	21	21	21	21	21	21	21	21	21	21	21			
	21	21	21	21	21	21	21	21	21	21	21	21			
	21	21	21	21	21	21	21	21	21	21	21	21			
	22	22	22	22	22	22	22	22	22	22	22	22			
	23	23	23	23	23	23	23	23	23	23	23	23			
	24	24	24	24	24	24	24	24	24	24	24	24			
	26	26	26	26	26	26	26	26	26	26	26	26			
	28	28	28	28	28	28	28	28	28	28	28	28			
	31	31	31	31	31	31	31	31	31	31	31	31			
	34	34	34	34	34	34	34	34	34	34	34	34			
	39	39	39	39	39	39	39	39	39	39	39	39			
	45	45	45	45	45	45	45	45	45	45	45	45			
	53	53	53	53	53	53	53	53	53	53	53	53			
	63	63	63	63	63	63	63	63	63	63	63	63			
	74	74	74	74	74	74	74	74	74	74	74	74			
	88	88	88	88	88	88	88	88	88	88	88	88			
						100				-					
			-		-	136									
	_					180		-							
						245						-			
						329		-			-				
	_					440									
	-					587									
	783	783	783	783	783	783	783	783	783	783	783	783			



11 Prestressed beam element -EN1992-1:2004

11.1 Shop drawings

Thumbnai	art Numbe	QTY	Mass	Total mass	Ø_	longitudir	pattern_T	_transver	spattern_L					
	01	4	3011	12044	8 mm									
	02	4	7018	28072	12 mm							STOF	AST IN	
	03	2	6774	13548	12 mm							//		
	11	64	982	62848	10 mm									
	12	46	341	15686	8 mm									
/	22	8	2378	19024	16 mm									
	íotal mass re	bars [kg]		151,22	Incide	nce kg/m³	59,30							
/	RI	ī	19373	19373		6 mm	200 mm	6 mm	200 mm					
ass weld	led-wire-me	shes [kg]		19,37	Incide	nce kg/m³	7,60							
/	finche" L=	14	5612,5	78575	12,7 mm									
Te	otal mass str	ands [kg]		78,575	Incide	nce kg/m³	30,81			Project name Code	BIBM NVERTED-T B	Federation of the		st Concrete Indust
	tal mass of:			249.17		Total con		2,55			Consulting	bibm	4	sheet number 2

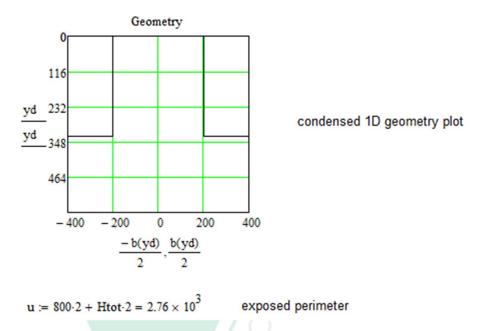
11.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

$$y_tr := (0 \ 329.99 \ 330 \ 580)^T$$


Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b_tr} &:= (400 \ 400 \ 800 \ 800)^T \\ \textbf{r_circ} &:= 0 \qquad \text{radius of central void pipe} \\ \textbf{x_circ}(\textbf{y}) &:= 2 \sqrt{\textbf{r_circ}^2 - \left(\textbf{y} - \frac{\text{Htot}}{2}\right)^2} \\ \textbf{b_lin}(\textbf{y}) &:= \text{linterp}(\textbf{y_tr}, \textbf{b_tr}, \textbf{y}) \\ \textbf{b_circ}(\textbf{y}) &:= \text{linterp}(\textbf{y_tr}, \textbf{b_tr}, \textbf{y}) - \textbf{x_circ}(\textbf{y}) \\ \textbf{b}(\textbf{y}) &:= \text{if} \left[\textbf{y} \leq \left(\frac{\text{Htot}}{2} + \textbf{r_circ} \right) \land \textbf{y} \geq \frac{\text{Htot}}{2} - \textbf{r_circ}, \textbf{b_circ}(\textbf{y}), \textbf{b_lin}(\textbf{y}) \right] \end{split}$$

<u>yd</u> := 0.. Htot

bibm

Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (43 \ 202 \ 354 \ 370 \ 538)^T$ Area of reinforcement at each depth

 $\mathbf{As} := \begin{pmatrix} 2 \cdot \mathbf{A}(12) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(12) \end{pmatrix}^{\mathrm{T}}$

js := rows(As) js = 5

dsmax := max(ds) dsmax = 538

$$As_{tot} := \sum_{j=1}^{js} As_{j} = 753.982$$

nc

2 0 0

Prestressing reinforcement

Area of a single strand:

nominal strand diameter Ap0 := 93 φp := 12.7 mm

Depth of prestressing strands from upper chord:

 $dp := (380 \ 480 \ 530)^{T}$

Area of strands at each depth:

$$Ap := (2 \cdot Ap0 \quad 0 \cdot Ap0 \quad 12 \cdot Ap0)^T$$

σp0 := 1400 MPa

 $\sigma prec := (0.4 \cdot \sigma p0 \sigma p0)^T$ initial prestressing perdite := $0 \cdot (1 \ 1 \ 1)^{T}$ in percentual % (losses are introduced later)

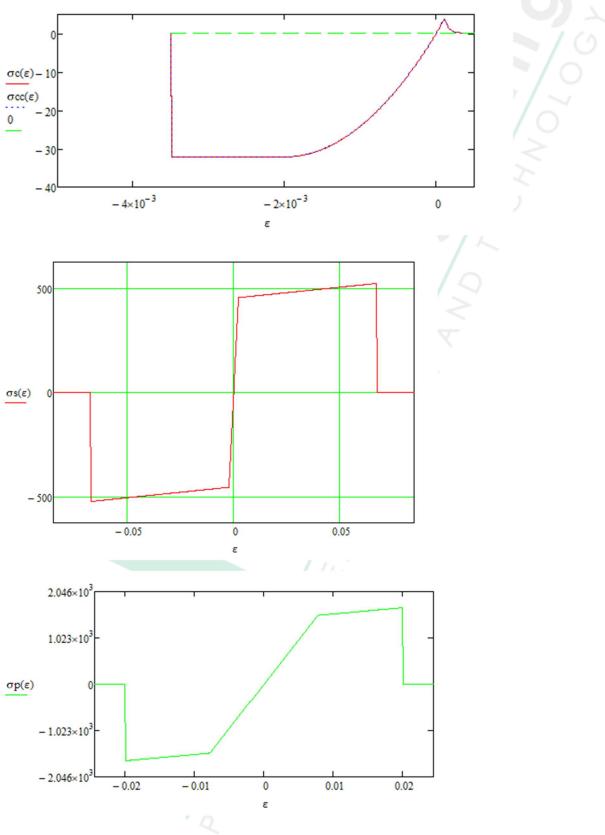
$$jp := rows(Ap)$$
 $jp = 3$

k := 1.. jp

$$\sigma \mathbf{o}_{\mathbf{k}} := \sigma \operatorname{prec}_{\mathbf{k}} \left[\frac{(100 - \operatorname{perdite}_{\mathbf{k}})}{100} \right] \qquad \sigma \mathbf{o} = \begin{pmatrix} 560 \\ 1.4 \times 10^{3} \\ 1.4 \times 10^{3} \end{pmatrix}$$

$$A \mathbf{p}_ \operatorname{tot} := \sum_{k=1}^{jp} A \mathbf{p}_{k} \qquad A \mathbf{p}_ \operatorname{tot} = 1.302 \times 10^{3}$$

$$y p \operatorname{max} := \operatorname{max}(d \mathbf{p}) \qquad y p \operatorname{max} = 530$$


$$N \mathbf{p}_ \operatorname{tot} := \sum_{k=1}^{jp} \left(\left(A \mathbf{p}_{k} \cdot \sigma \mathbf{o}_{k} \right) \right) \qquad N \mathbf{p}_ \operatorname{tot} = 1.667 \times 10^{6} \qquad N \qquad \text{total prestressing initial force}$$

$$Y \mathbf{p} := \frac{\sum_{k=1}^{jp} \left(d \mathbf{p}_{k} \cdot A \mathbf{p}_{k} \cdot \sigma \mathbf{o}_{k} \right)}{\sum_{k=1}^{jp} \left(A \mathbf{p}_{k} \cdot \sigma \mathbf{o}_{k} \right)} = 520.625 \quad \text{mm} \qquad \text{centre of gravity of prestressing}$$

11.3 Material constitutive laws employed in the calculation

199

11.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{Htot} b(y) dy$$

$$\rho s := \frac{As_tot}{Ac} = 2.27 \times 10^{-3}$$

$$\rho p := \frac{Ap_tot}{Ac} = 3.921 \times 10^{-3}$$

$$Ac = 3.321 \times 10^{\circ}$$

geometric ratio for longitudinal mild reinforcement

geometric ratio for longitudinal prestressing tendons

$$ptot := \frac{As_tot + Ap_tot}{Ac} = 6.191 \times 10^{-3}$$
 total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Ac

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy$$
 Syc = 1.128 × 10⁸

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 339.696$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy \qquad \text{Ixo_cls} = 8.927 \times 10^9$$

Global area of all prestressing reinforcement

Area_tr :=
$$s \leftarrow 0$$
 Area_tr = 1.302×10^3
for $x \in 1...jp$
 $s \leftarrow Ap_x + s$

First moment of the area referred to prestressing reinforcement only

$$Sxp := \sum_{i=1}^{Jp} (Ap_i dp_i) \qquad Sxp = 6.622 \times 10^5$$

Centre of gravity of prestressing

$$\frac{Yp}{Area_{tr}} = \frac{Sxp}{Area_{tr}} \qquad Yp = 508.571$$

Idealisation coefficients (elastic)

$$np := \frac{Ep}{Ecm} \qquad np = 5.374$$
$$ns := \frac{Es}{Ecm} \qquad ns = 5.512$$

200

Area of ideal cross-section

Aid := Ac + (np - 1)
$$\cdot \sum_{j=1}^{jp} Ap_j + (ns - 1) \cdot \sum_{j=1}^{js} As_j$$
 Aid = 3.412 × 10⁵

First moment of the reinforced concrete area

$$Sxid := Ac \cdot yG + (np - 1) \cdot (Area_tr \cdot Yp) + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$

$$Sxid = 1.167 \times 10^8$$

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 342.097

Second moment of the concrete area subtracting the effect of reinforcement

$$Ixoidcls := \int_{0}^{Htot} b(y) \cdot (y - Yid)^{2} dy - \sum_{i=1}^{jp} \left[Ap_{i} \cdot (dp_{i} - Yid)^{2} \right] - \sum_{j=1}^{js} \left[As_{j} \cdot (ds_{j} - Yid)^{2} \right]$$

Second moment of the prestressing reinforcement area

Ixoidprec :=
$$np \cdot \sum_{i=1}^{jp} \left[Ap_i \cdot (dp_i - Yid)^2 \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{Js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidprec + Ixoidlenta
$$Ixo_id = 9.242 \times 10^9 \text{ mm}^4$$
 $\frac{Ixo_id}{Ixo_cls} = 1.035$

11.5 Loads

0		-	٦
0	AD	S	

ECADO	
g1 := 8.3 kN/m	dead load from self-weight
g2 := (2 + 2.89)·9.45 = 46.211 kN/	m nonstructural dead load
q := 28.35 kN/m live loa	d
L := 7500 mm calculat	ion length (span between supports)
ψ2 := 0.3 non-contemporanei	ty factor for quasi-permanent load combination
ψ1 := 0.5 non-contemporanei	ty factor for frequent load combination
Mq_SLSg1(x) := (g1) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from self-weight load
Mq_SLSg2(x) := (g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from nonstructural dead load
$Mq_SLSq(x) := (q \cdot \psi 2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from live load

11.6 Prestressing transfer and time-dependent behaviour

TRANSFER OF PRESTRESS (§8.10.2.2)

α <mark>1</mark> := 1	gradual release of prestressing	
α2 := 0.19	for 7-wire strands	
σpm0 := σp0 =	1.4×10^{3}	
ηp1 := 3.2	for 7-wire strands	
η <mark>1 := 1</mark>	in favourable position	
fbpt := $\eta p1 \cdot \eta 1 \cdot$	fctdj(2) = 3.51 MPa	
$lpt := \frac{\alpha 1 \cdot \alpha 2 \cdot \sigma p}{fbpt}$	$\frac{m0}{m} \cdot \phi p = 962.587$ mm	
lpt1 := 0.81pt = 1	770.069 mm	
lpt2 := 1.2·lpt =	1.155×10^{3} mm	

equivalent constant bond stress at prestress realease following (8.15)
basic value of the transmission length following §(8.16)
lower-bound transfer length following §(8.17)
upper-bound transfer length following §(8.18)

Prestress losses

 $hn := 2 \cdot \frac{Ac}{u} = 240.643$

 $\varepsilon_{cs} := \frac{0.65}{1000} = 6.5 \times 10^{-4}$ shrinkage strain assumed as a result of laboratory tests on the specific concrete mix employed

 $k\rho := 0.16$

 $t := 50.365 = 1.825 \times 10^4$ days Life span

$$\sigma cpQP2(x) := \frac{-Np_tot}{Aid} + \frac{[Mq_SLSg1(x) - Np_tot \cdot (Yp - Yid)] \cdot (Yp - Yid)}{Ixo_id} \qquad \sigma cpQP2\left(\frac{L}{2}\right) = -8.831$$
stress in quasi-permanent load combination at 2 days
(conventional equivalent time for prostressing release)

(conventional equivalent time for prestressing release)

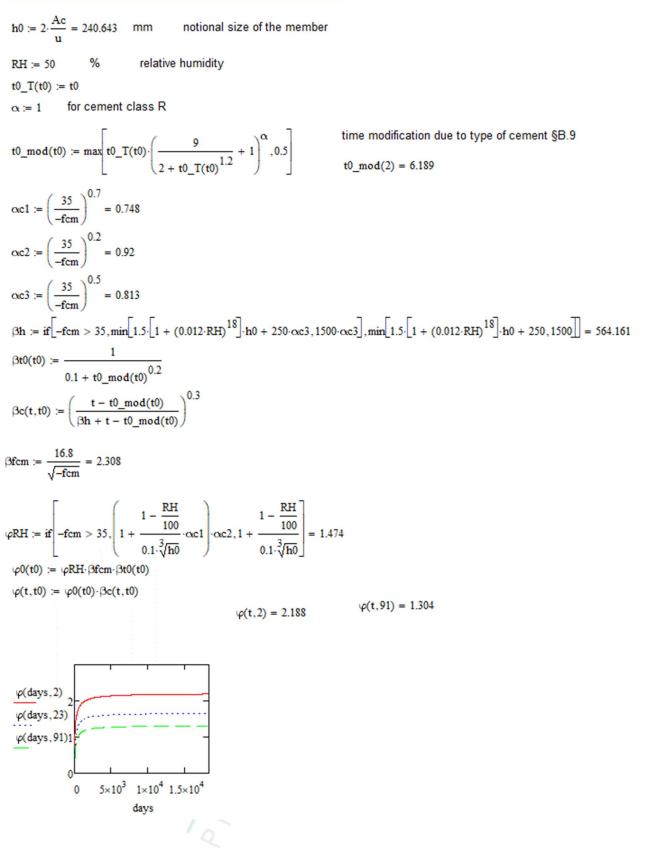
$$\sigma cpQP23(x) := \frac{Mq_SLSg2(x) \cdot (Yp - Yid)}{Ixo_id}$$

$$\sigma cpQP23\left(\frac{L}{2}\right) = 5.852$$

 $\sigma cpQP91\left(\frac{L}{2}\right) = 1.077$

stress in quasi-permanent load combination at 23 days (conventional time for assemblage of the structure on site)

$$\sigma cpQP91(x) := \frac{Mq_SLSq(x) \cdot (Yp - Yid)}{Ixo_id}$$


stress in quasi-permanent load combination at 91 days (conventional time for enter in use of the structure)

$$\Delta \sigma pr(x,t) \coloneqq \left[\sigma p0 + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) \right] \cdot \rho 1000 \cdot \left(\frac{24 \cdot t}{1000} \right)^{k\rho}$$

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

TIME-DEPENDENT LOSSES OF PRESTRESS (§5.10.6)

$$\Delta \sigma p_csr(x,t) := \frac{-\varepsilon cs \cdot Ep - 0.8 \cdot \Delta \sigma pr(x,t) + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) \cdot \varphi(t,2) + \sigma cpQP23(x) \cdot \varphi(t,23) + \sigma cpQP91(x) \cdot \varphi(t,91))}{1 + \frac{Ep}{Ecm} \cdot \frac{Ap_tot}{Ac} \cdot \left[1 + \frac{Ac}{Ixoidcls} \cdot (Yp - Yid)^2\right] \cdot \left(1 + 0.8 \cdot \frac{\varphi(t,2) \cdot \sigma cpQP2(x) + \varphi(t,23) \cdot \sigma cpQP23(x) + \varphi(t,91) \cdot \sigma cpQP91(x)}{\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)}\right)}$$

$$prestress losses following \S(5.46)$$

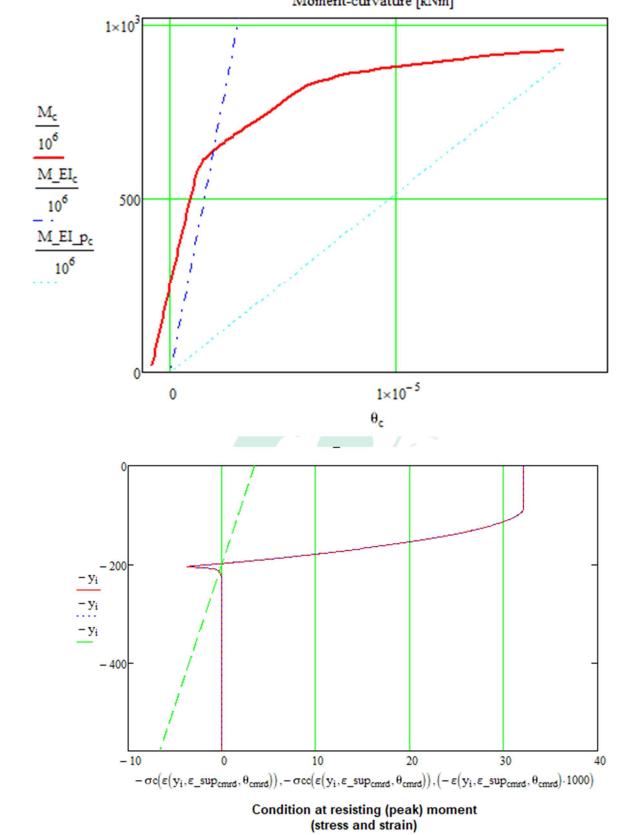
NOTE: a weighed creep coefficient was considered accounting for the 3 load phases previously introduced

$$\sigma pm(x,t) := \sigma p0 - \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) + \Delta \sigma p_c csr(x,t)$$
 prestress considering immediate and delayed losses
 $\frac{\sigma pm(\frac{L}{2}, 365 \cdot 50)}{\sigma p0} = 0.861$ expected residual prestress ratio after 50 years of life with respect to initial
 $\varepsilon pm := \frac{\sigma pm(\frac{L}{2}, 365 \cdot 50)}{\sigma p0} \cdot \varepsilon p0$ expected residual strain after 50 years of life with respect to initial

 $\sigma_{pm}\left(\frac{L}{2}, 365.50\right) \cdot Ap_tot = 1.569 \times 10^{6}$ residual prestress force after 50 years of life Np_tot =

initial prestress force

11.7 Non-linear moment-curvature diagram


Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

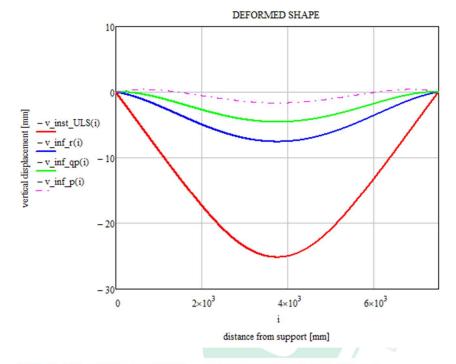
Design external axial load

NS := -0

Moment-curvature [kNm]

11.8 Bending moment distribution

11.9 SLS checks


NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

 $v_{inf_p(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (1 + \varphi(365 \cdot 50, 23))$

deflection profile at 50 years including creep for permanent load combination

 $v_inf_qp(x) \coloneqq v_SLSg1(x) \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot (1 + \varphi(365 \cdot 50, 91))$ deflection profile at 50 years including creep for quasi permanent load combination

 $v_inf_r(x) := v_SLSg1(x) \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_SLSg2(x) \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_SLSqp(x) \cdot \varphi(365 \cdot 50, 91) + v_SLSr(x)$ deflection profile at 50 years including creep for rare load combination

SLS DEFLECTION CONTROL - RIGOROUS METHOD (§7.4.3)

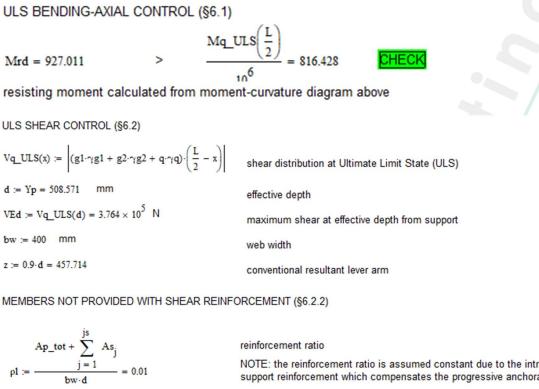
$$v_{inf_r}\left(\frac{L}{2}\right) = 7.564 < \frac{L}{250} = 30$$
 CHECK

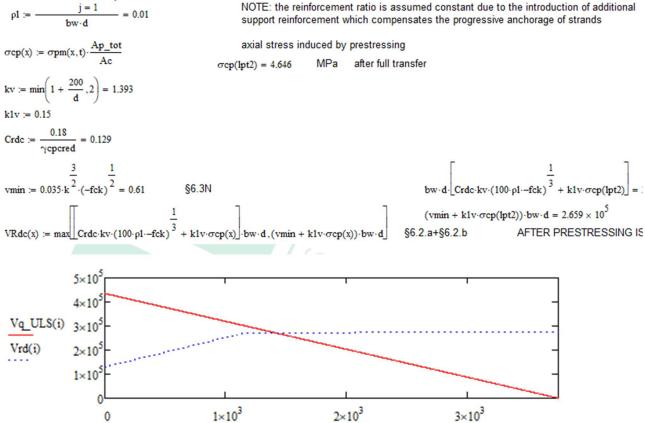
maximum deflection

values calculated from differential equations above

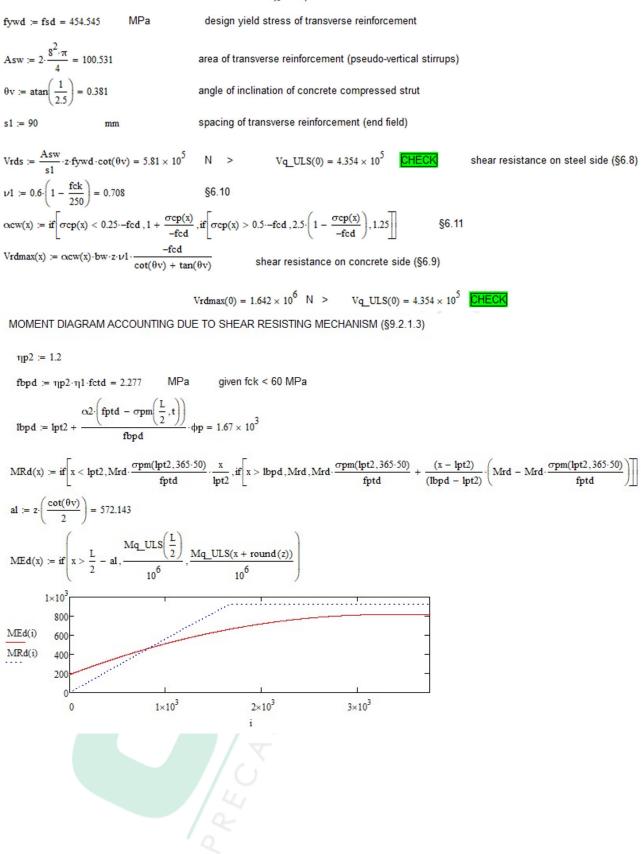
$$v_{inf_p}\left(\frac{L}{2}\right) = 1.638$$
 > $\frac{-L}{250} = -30$ CHECK maximum camber

SLS STRESS CONTROL (§7.2) k1 := 0.6 rsup := 1.05 k2 := 0.45 prestressing modification coefficients rinf := 0.95 k3 := 0.8 k4 := 1 k5 := 0.75 $\sigma cpg1_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id}$ elastic stress of bottom concrete chord for selfweight loads only $\sigma cpg1_top(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (-Yid)}{Ixo_id}$ elastic stress of top concrete chord for selfweight loads only $\sigma cpg1_tops(x) := \frac{Es}{Ecm} \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (ds_1 - Yid)}{Ixo_id} \right]$ elastic stress of top series of mild steel for selfweight loads only $\sigma cpf_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSf(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id}$ elastic stress of bottom concrete chord for frequent load combination $\sigma cpr_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id}$ elastic stress of bottom concrete chord for rare load combination $\sigma cpr_top(x) := \frac{-Np_tot \cdot ninf}{Aid} + \frac{[Mq_SLSr(x) - ninf \cdot Np_tot \cdot (Yp - Yid)] \cdot (-Yid)}{Ixo id}$ elastic stress of top concrete chord for rare load combination $\sigma cpr_p(x) \coloneqq \sigma pm(x,t) \cdot rsup + 15 \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (dp_{jp} - Yid)}{Ixo_id} \right]$ creep stress of bottom prestressing steel for rare load combination $\sigma cpr_s(x) := 15 \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (ds_{js} - Yid)}{Ixo_id} \right]$ creep stress of bottom mild steel for rare load combination



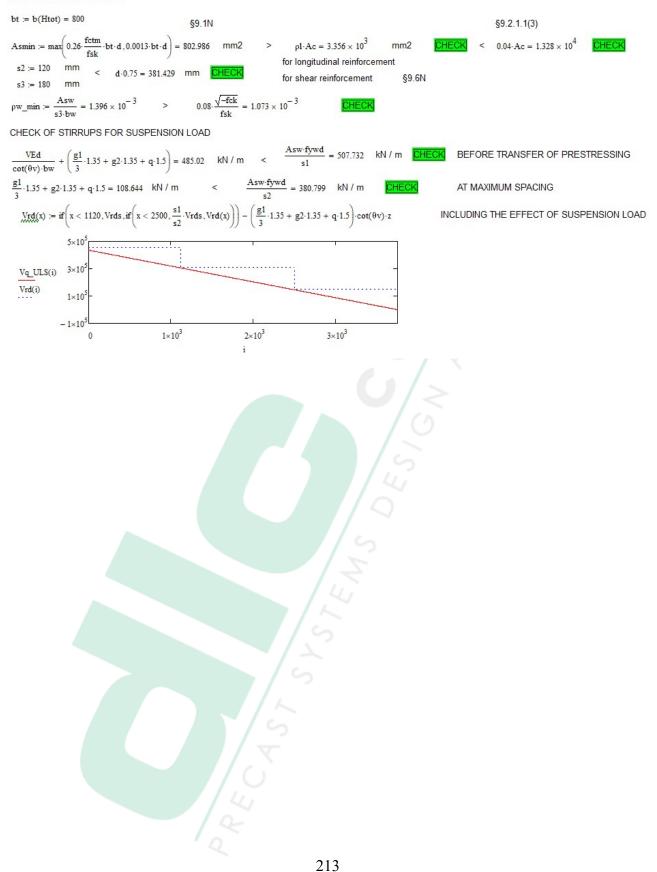

$\sigma cpg1_bot(lpt1) = -12.074$	>	k1·fckj(2) = -23.178 k2·fck = -20.25	CHECK
$\sigma cpg1_top(lpt1) = 4.858$	<	fctmj(2) = 2.193	
σcpg1_tops(lpt1) = 19.858	<	k3·fsk = 400	
$\sigma \operatorname{cpf_bot}\left(\frac{L}{2}\right) = -0.196$	<	fctm = 3.795	CHECK
$\sigma \operatorname{cpr_bot}\left(\frac{L}{2}\right) = 2.369$	<	fctm = 3.795	
$\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -16.45$	>	$k1 \cdot fck = -27$ 0.4 \cdot fcm = -21.2	CHECK
$\sigma \operatorname{cpr_p}\left(\frac{L}{2}\right) = 1.277 \times 10^3$	<	$k5 \cdot fptk = 1.395 \times 10^3$	CHECK
$\sigma \operatorname{cpr}_{s}\left(\frac{L}{2}\right) = 15.685$	<	k3·fsk = 400	CHECK
SLS CRACK CONTROL (§7.3)			
$c_{act} := Htot - ds_{js} - 10 = 32$			
ksurf := min $\left(1.5, \frac{c_act}{10 + cmin_dur_a}\right)$	$\left(\frac{1}{s}\right) = 1.$	5	
wlim_cal := 0.2	mm		
w_freq := 0 < wlim_cal	= 0.2	CHECK	
		210	

11.10 ULS checks



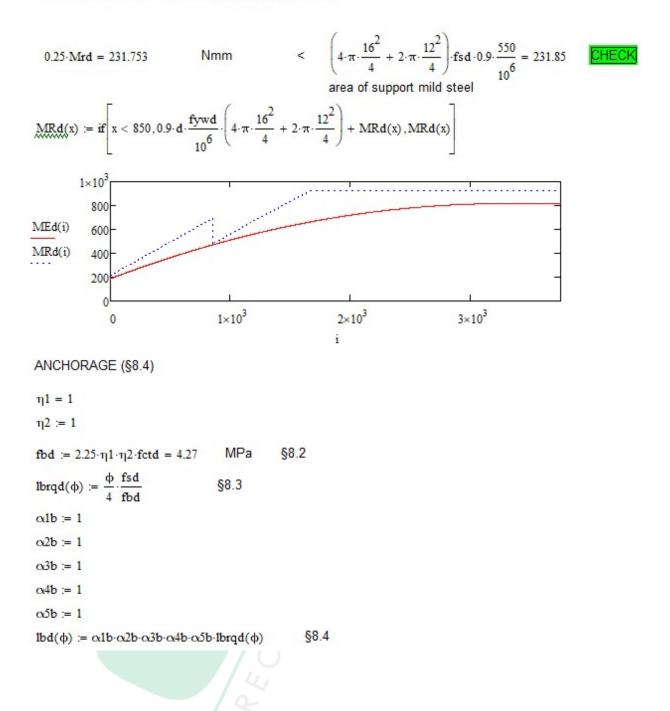
i

MEMBERS PROVIDED WITH SHEAR REINFORCEMENT (§6.2.3)



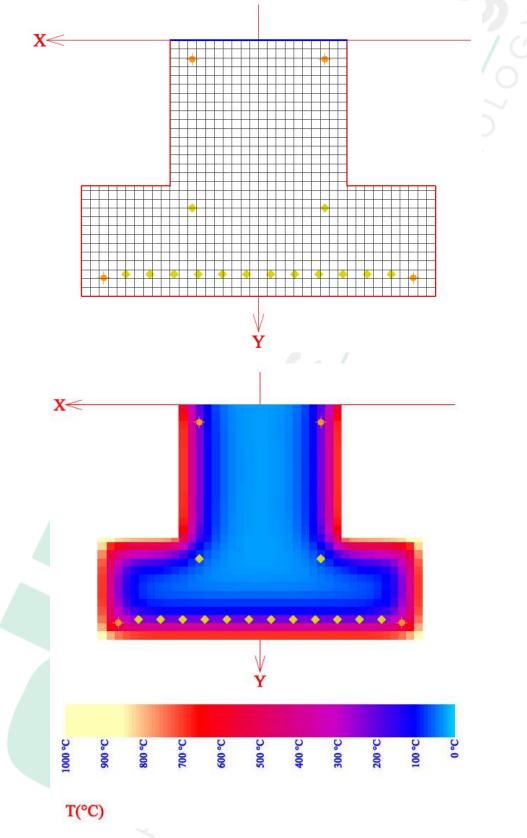
212

MINIMUM REINFORCEMENT

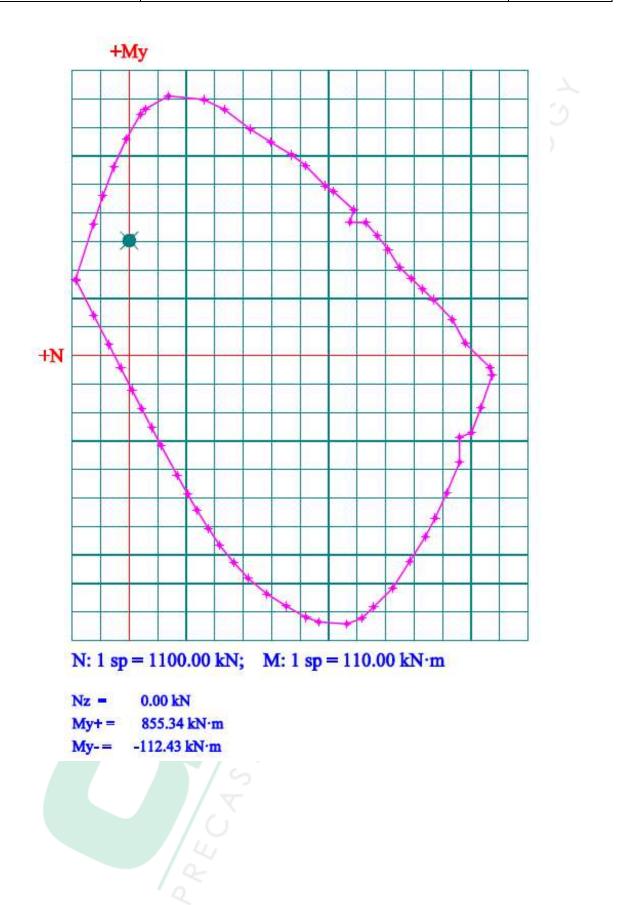


CHECK OF HORIZONTAL SADDLE BAR

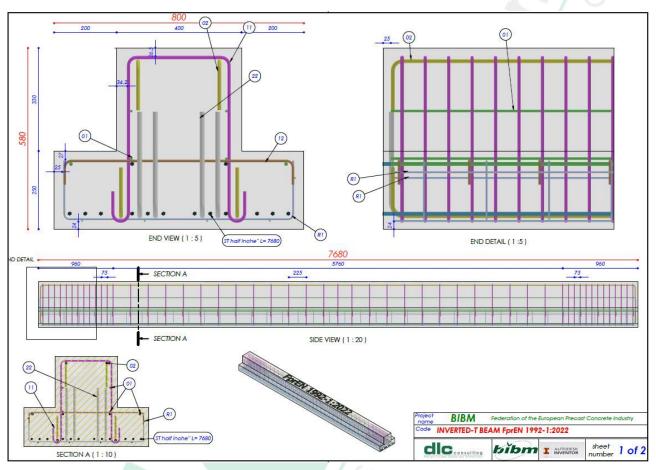
$$\frac{\left(\frac{g1}{3} \cdot 1.35 + g2 \cdot 1.35 + q \cdot 1.5\right)}{2} \cdot 100 \cdot s2 = 6.519 \times 10^5 \text{ Nmm} < \pi \cdot \frac{g^2}{4} \cdot \text{fsd} \cdot 0.9 \cdot 220 = 4.524 \times 10^6 \text{ CHECK}$$


CHECK OF SUPPORT MILD REBARS (§9.2.1.4(1))

11.11 Fire checks


27	35	49	73	105	220	391	686										
27	35	49	73	106	220	392	687										
27	35	50	73	107	220	392	687										
27	35	50	73	107	221	392	687	4									
27	35	50	73	107	221	392	687	-									
27	35	50	73	107	220	392	687										
27	35	49	73	106	220	392	687										
27	35	49	73	105	220	391	686										
27	35	49	72	102	218	389	685	1									
27	34	48	71	100	214	383	68 1										
26	33	46	69	100	205	369	669										
26	32	44	65	100	187	338	632	5									
25	30	40	58	92	154	275	508	730	771	782	787	790	795	805	822	853	90
24	28	35	49	73	100	1.00	300			498	508	517	529	554	600	681	82
23	26	31	41	57	80	104	174	227	261	280	29 1	303	322	358	425	546	75
23	25	29	35	45	59	78	100	119	144	159	169	181	202	247	328	471	72
24	26	28	31	37	46	56	68	78	89	98	100	100	130	183	274	430	70
24 28	26 29	28 30	31 32	37 35	46 40	56 45	68 52	78 57	89 63	98 69	100 76	100 86	130 100		274 247	430 410	
													1.0	153		-	69
28	29	30	32	35	40	45	52	57	63	69	76	86	100	153 140	247	410	69 69
28 35	29 36	30 36	32 38	35 39	40 42	45 44	52 48	57 51	63 55	69 59	76 66	86 77	100 97	153 140 145	247 237	410 403	69 69 69
28 35 50	29 36 50	30 36 50	32 38 51	35 39 52	40 42 53	45 44 54	52 48 56 76	57 51 58 77	63 55 60 78	69 59 63	76 66 69 87	86 77 80	100 97 100	153 140 145	247 237 241	410 403 406	69 69 69 69
28 35 50 73	29 36 50 73	30 36 50 73	32 38 51 74	35 39 52 74	40 42 53 75	45 44 54 75	52 48 56 76	57 51 58 77	63 55 60 78	69 59 63 81	76 66 69 87	86 77 80 97	100 97 100 100	153 140 145 166	247 237 241 259 299	410 403 406 419	69 69 69 71
28 35 50 73 107	29 36 50 73 107	30 36 50 73 107	32 38 51 74 107	35 39 52 74 107	40 42 53 75 108	45 44 54 75 108	52 48 56 76 109 221	57 51 58 77 110 221	63 55 60 78 112 222	69 59 63 81 116 223	76 66 69 87 124 227	86 77 80 97 140	100 97 100 100 165	153 140 145 166 213	247 237 241 259 299 373	410 403 406 419 448	70 69 69 69 71 74 78

BIBM EC2 project - calculation report



12 Prestressed beam element – FprEN1992-1:2022

12.1 Shop drawings

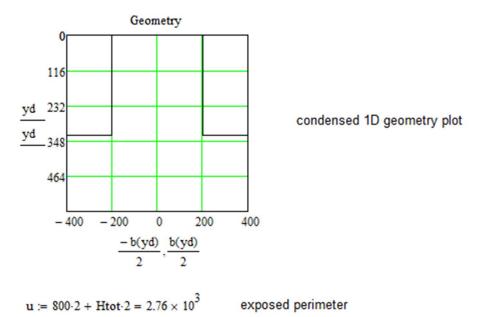
humbnail	Part Number	QTY	Mass	Total mass	Ø_	Ø_longit∪dinal	pattern_T	Ø_trans∨erse	pattern_L				
/	01	4	3011	12044	8 mm								
/	02	4	7018	28072	12 mm							CUSC: 2755	
/	03	2	6774	13548	12 mm								
\square	п	52	982	51064	10 mm								
	12	35	341	11935	8 mm								
/	22	8	2378	19024	16 mm								
	Total mass rebars	[Kg]		135,69	lr	icidence kg/m ^s	53,21						
/	R1	1	19373	19373		6 mm	200 mm	6 mm	200 mm				
Fotal mass	welded-wire-meshes	[kg]		19,37	In	ncidence kg/m³	7,60	-					
/	ST half inche" L= 7680	14	5612.5	78575	12.7 mm								
	Total mass strands	[kg]		78,575	lr	<mark>icidence kg/m^s</mark>	30,81			Project name Code	BIBM NVERTED-T B	Federation of the EAM FprEN 19	st Concrete Indus
-	Total mass of steel	[km]		233,64		Total concrete	volume Ir	2.55		20	Cconsulting		sheet 2

12.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord


$$y_tr := (0 \ 329.99 \ 330 \ 580)^T$$

Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b}_{tr} &:= (400 \ 400 \ 800 \ 800)^{T} \\ \textbf{r}_{circ} &:= 0 \qquad \text{radius of central void pipe} \\ \textbf{x}_{circ}(\textbf{y}) &:= 2 \sqrt{\textbf{r}_{circ}^{2} - \left(\textbf{y} - \frac{\text{Htot}}{2}\right)^{2}} \\ \textbf{b}_{lin}(\textbf{y}) &:= \text{linterp}(\textbf{y}_{tr}, \textbf{b}_{tr}, \textbf{y}) \\ \textbf{b}_{circ}(\textbf{y}) &:= \text{linterp}(\textbf{y}_{tr}, \textbf{b}_{tr}, \textbf{y}) - \textbf{x}_{circ}(\textbf{y}) \\ \textbf{b}(\textbf{y}) &:= \text{if}\left[\textbf{y} \leq \left(\frac{\text{Htot}}{2} + \textbf{r}_{circ}\right) \land \textbf{y} \geq \frac{\text{Htot}}{2} - \textbf{r}_{circ}, \textbf{b}_{circ}(\textbf{y}), \textbf{b}_{lin}(\textbf{y})\right] \end{split}$$

FCHNOLOGY

bibm

Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (43 \ 202 \ 354 \ 370 \ 538)^T$ Area of reinforcement at each depth

 $\mathbf{As} := \begin{pmatrix} 2 \cdot \mathbf{A}(12) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(12) \end{pmatrix}^{\mathrm{T}}$

js := rows(As) js = 5

dsmax := max(ds) dsmax = 538

$$As_{tot} := \sum_{j=1}^{j_s} As_j = 753.982$$

Prestressing reinforcement

Area of a single strand:

nominal strand diameter Ap0 := 93 $\phi p := 12.7$ mm Depth of prestressing strands from upper chord: $dp := (380 \ 480 \ 530)^T$ Area of strands at each depth: $Ap := (2 \cdot Ap0 \quad 0 \cdot Ap0 \quad 12 \cdot Ap0)^T$ σp0 := 1400 MPa $\sigma prec := (0.4 \cdot \sigma p0 \sigma p0)^T$ initial prestressing perdite := $0 \cdot (1 \ 1 \ 1)^T$ in percentual % (losses are introduced later) jp := rows(Ap) jp = 3k := 1.. jp $\sigma_{\mathbf{v}_{k}} \coloneqq \sigma_{\mathbf{v}_{k}} \left[\frac{\left(100 - \text{perdite}_{k}\right)}{100} \right]$ $\sigma \mathbf{o} = \begin{pmatrix} 560 \\ 1.4 \times 10^3 \end{pmatrix}$ $Ap_tot := \sum_{k=1}^{JP} Ap_{k} \qquad Ap_tot = 1.302 \times 10^{3}$ ypmax := max(dp) ypmax = 530 $Np_tot := \sum_{k=-1}^{jp} \left(\left(Ap_k \cdot \sigma o_k \right) \right)$ $Np_tot = 1.667 \times 10^6$ N
$$\label{eq:Yp} \begin{split} \mathrm{Yp} &\coloneqq \frac{\displaystyle\sum_{k=1}^{jp} \left(\mathtt{dp}_k \cdot \mathtt{Ap}_k \cdot \sigma \mathtt{o}_k \right)}{\displaystyle\sum_{k=1}^{jp} \left(\mathtt{Ap}_k \cdot \sigma \mathtt{o}_k \right)} = 520.625 \qquad \text{mm} \qquad \text{centre of gravity of prestressing} \end{split}$$
total prestressing initial force

$\sigma c(\varepsilon) - 10$ σcc(ε) - 20 0 - 30 -40- 4×10⁻³ - 2×10⁻³ - 1×10⁻³ 1×10⁻³ - 3×10⁻³ 0 ε 500 **σs(ε)** 0 - 500 - 0.05 0.05 0 ε 2.046×10³ 1.023×10³ **σp(ε)** 0 -1.023×10^{3} - 2.046×103 - 0.02 0.02 0 ε

12.3 Material constitutive laws employed in the calculation

223

12.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{\text{Htot}} b(y) \, dy$$
$$\rho s := \frac{As_tot}{Ac} = 2.27 \times 10^{-3}$$

$$Ac = 3.321 \times 10^{\circ}$$

geometric ratio for longitudinal mild reinforcement

 $\rho \mathbf{p} \coloneqq \frac{\mathbf{A}\mathbf{p}_\mathbf{t}\mathbf{o}\mathbf{t}}{\mathbf{A}\mathbf{c}} = 3.921 \times 10^{-3}$

geometric ratio for longitudinal prestressing tendons

 $ptot := \frac{As_tot + Ap_tot}{Ac} = 6.191 \times 10^{-3}$ total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Hot}} b(y) \cdot y \, dy$$
 Syc = 1.128 × 10⁸

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 339.696$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy \qquad \text{Ixo_cls} = 8.927 \times 10^{9}$$

Global area of all prestressing reinforcement

Area_tr :=
$$s \leftarrow 0$$
 Area_tr = 1.302×10^3
for $x \in 1...jp$
 $s \leftarrow Ap_x + s$

First moment of the area referred to prestressing reinforcement only

$$Sxp := \sum_{i=1}^{Jp} (Ap_i \cdot dp_i) \qquad Sxp = 6.622 \times 10^5$$

Centre of gravity of prestressing

$$\frac{Yp}{Area_{tr}} = \frac{Sxp}{Area_{tr}} \qquad Yp = 508.571$$

Idealisation coefficients (elastic)

$$np := \frac{Ep}{Ecm} \qquad np = 5.465$$
$$ns := \frac{Es}{Ecm} \qquad ns = 5.605$$

224

Area of ideal cross-section

Aid := Ac + (np - 1)
$$\cdot \sum_{j=1}^{jp} Ap_j + (ns - 1) \cdot \sum_{j=1}^{js} As_j$$
 Aid = 3.414 × 10⁵

First moment of the reinforced concrete area

$$Sxid := Ac \cdot yG + (np - 1) \cdot (Area_tr \cdot Yp) + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$

$$Sxid = 1.168 \times 10^8$$

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 342.145

Second moment of the concrete area subtracting the effect of reinforcement

$$Ixoidcls := \int_{0}^{Htot} b(y) \cdot (y - Yid)^{2} dy - \sum_{i=1}^{jp} \left[Ap_{i} \cdot (dp_{i} - Yid)^{2} \right] - \sum_{j=1}^{js} \left[As_{j} \cdot (ds_{j} - Yid)^{2} \right]$$

Second moment of the prestressing reinforcement area

Ixoidprec :=
$$np \cdot \sum_{i=1}^{jp} \left[Ap_i \cdot (dp_i - Yid)^2 \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{Js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

Ixo_id := Ixoidcls + Ixoidprec + Ixoidlenta
$$Ixo_id = 9.249 \times 10^9 \text{ mm}^4$$
 $\frac{Ixo_id}{Ixo_cls} = 1.036$

12.5 Loads

LOADS	
g1 := 8.3 kN/m	dead load from self-weight
g2 := (2 + 2.89)·9.45 = 46.211 kN/m	nonstructural dead load
q := 28.35 kN/m	live load
L:= 7500 mm calculation	length (span between supports)
$\psi_2 := 0.3$ non-contemporaneity f	factor for quasi-permanent load combination
$\psi 1 := 0.5$ non-contemporaneity f	factor for frequent load combination
Mq_SLSg1(x) := (g1) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from self-weight load
Mq_SLSg2(x) := (g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from nonstructural dead load
Mq_SLSq(x) := $(q \cdot \psi 2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from live load

12.6 Prestressing transfer and time-dependent behaviour

TRANSFER OF PRESTRESS (§13.5.3)

$\alpha 1 := 1$	gradual re	lease of prestressi	ng
α2 := 0.26	for 7-wire	strands	
σpm0 := σp0 = 1.	4 × 10 ³	MPa	
η1 := 1	n favourabl	e position	
$lpt := \frac{\gamma c}{1.5} \cdot \frac{\alpha l}{\eta l \cdot \sqrt{(-1)^2}}$	α2·σрm0 fcmj(2) - 8	<u>-</u> · φp = 906.996	mm
1pt1 := 0.81pt = 72	5.597	mm	
lpt2 := 1.2·lpt = 1.	088×10^{3}	mm	

basic value of the transmission length following §(13.4)

lower-bound transfer length following §(13.6)

upper-bound transfer length following §(13.7)

LOADS

g1 := 8.3 kN/m	dead load from self-weight
g2 := (2 + 2.89)·9.45 = 46.211 kN/m	nonstructural dead load
q := 28.35 kN/m	live load
L:= 7500 mm calculation	length (span between supports)
$\psi_2 := 0.3$ non-contemporaneity f	factor for quasi-permanent load combination
ψ1 := 0.5 non-contemporaneity f	factor for frequent load combination
Mq_SLSg1(x) := (g1) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from self-weight load
Mq_SLSg2(x) := (g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from nonstructural dead load
Mq_SLSq(x) := $(q \cdot \psi 2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$	SLS bending moment distribution from live load

Prestress losses

hn :=
$$2 \cdot \frac{Ac}{u} = 240.643$$
 mm
A:= $0.79 + \frac{(hn - 200)}{(500 - 200)} \cdot (0.75 - 0.79) = 0.785$

 $\varepsilon_{cs} := \frac{0.65}{1000} = 6.5 \times 10^{-4}$ shrinkage strain assumed as a result of laboratory tests on the specific concrete mix employed

 $\rho 1000 := 0.025$

for class 2 (low-relaxation) tendons

kp := 0.16

 $t := 50.365 = 1.825 \times 10^4$ days Life span

$$\sigma cpQP2(x) := \frac{-Np_tot}{Aid} + \frac{[Mq_SLSg1(x) - Np_tot\cdot(Yp - Yid)]\cdot(Yp - Yid)}{Ixo_id} \qquad \sigma cpQP2\left(\frac{L}{2}\right) = -8.823$$
stress in quasi-permanent load combination at 2 days
(conventional equivalent time for prestressing release)

$$\sigma cpQP23(x) := \frac{Mq_SLSg2(x) \cdot (Yp - Yid)}{Ixo id}$$

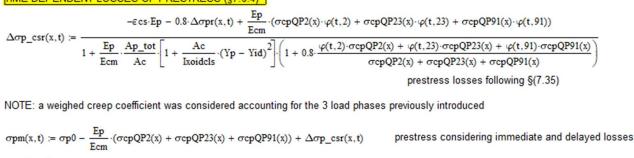
$$\sigma cpQP23\left(\frac{L}{2}\right) = 5.847$$

stress in quasi-permanent load combination at 23 days (conventional time for assemblage of the structure on site)

$$\sigma cpQP91(x) := \frac{Mq_SLSq(x) \cdot (Yp - Yid)}{Ixo_i d} \qquad \qquad \sigma cpQP91\left(\frac{L}{2}\right) = 1.076$$

stress in quasi-permanent load combination at 91 days (conventional time for enter in use of the structure)

$$\Delta \sigma pr(x,t) \coloneqq \left[\sigma p0 + \frac{Ep}{Ecm} \cdot (\sigma cpQP2(x) + \sigma cpQP23(x) + \sigma cpQP91(x)) \right] \cdot \rho 1000 \cdot \left(\frac{24 \cdot t}{1000} \right)^{k\rho}$$


DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

RH = 50
t0_sd(t0) = t0
(3bc_fcm :=
$$\frac{1.8}{(-fcm)^{0.7}} = 0.112$$
 (3bc_t_t0(t,t0) := $\ln\left[\left(\frac{30}{t0_sdj(t0)} + 0.033\right)^2(t-t0) + 1\right]$
(3dc_fcm := $\frac{412}{(-fcm)^{1.4}} = 1.588$
(3dc_f(t1)) := $\frac{1 - \frac{RH}{30}}{\frac{3}{0.1 + \frac{1}{1.5}}} = 0.804$
(3dc_t0(t0)) := $\frac{1}{0.1 + t0_sdj(t0)^{0.2}}$
 $\gamma(t0) := \frac{1}{2.3 + \frac{3.5}{\sqrt{t0_sdj(t0)}}}$
 $\alpha cm := \left(\frac{35}{-fcm}\right)^{0.5} = 0.813$
(3h := min(1.5-lm + 250-xcm, 1500-xcm) = 564.124
(3dc_t_t0(t,t0) := $\left[\frac{(t-t0)}{(3h+(t-t0))}\right]^{\gamma(t0)}$
 $\varphi dc(t,t0) := (3bc_fcm (3bc_RH; (3dc_t0(t0)) (3dc_t t0(t,t0)))$
 $\varphi dc(t,t0) := (3bc_fcm (3bc_rt0(t,t0)))$
 $\varphi(t,t0) := (3bc_fcm (3bc_rt0(t,t0)))$
 $\varphi(t,2) = 2.718$ $\varphi(t,91) = 1.363$
 $\varphi(t,91) = 1.363$

TIME-DEPENDENT LOSSES OF PRESTRESS (§7.6.4)

 $\frac{\sigma pm\left(\frac{L}{2}, t\right)}{\sigma p0} = 0.857$ expected residual prestress ratio after 50 years of life with respect to initial $\varepsilon_{pm} := \frac{\sigma_{pm}\left(\frac{L}{2}, t\right)}{\sigma_{p0}} \cdot \varepsilon_{p0}$ expected residual strain after 50 years of life with respect to initial

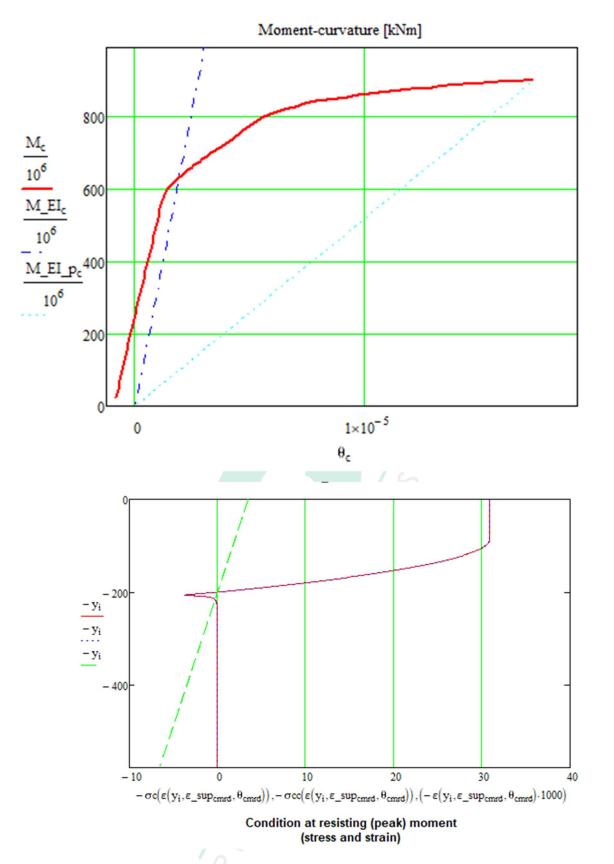
 $\sigma_{pm}\left(\frac{L}{2},t\right) \cdot Ap_tot = 1.563 \times 10^6$ N residual prestress force after 50 years of life

Np tot = 1.667×10^6 N initial prestress force

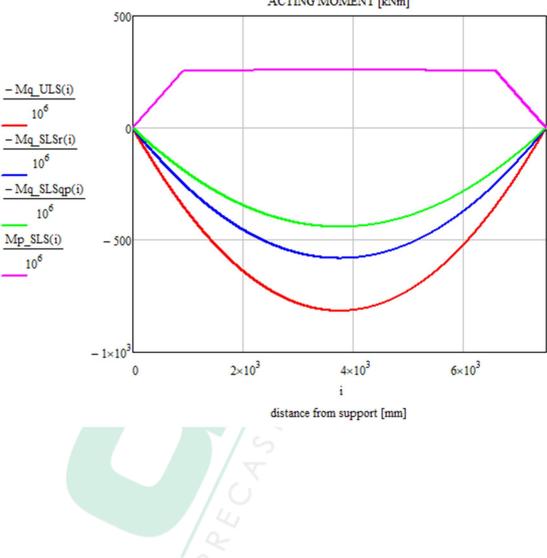
12.7 Non-linear moment-curvature diagram

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

$$\begin{split} & \underset{i=1}{\overset{\mathsf{Hot}}{\underset{i=1}{\overset{\mathsf{for}}{\underset{i=1}{\overset{$$


Design external axial load

NS := -0



12.8 Bending moment distribution

- γg1 := 1.35 partial safety coefficient for self-weight structural loads
- γg2 := 1.35 partial safety coefficient for non-structural certain dead loads

partial safety coefficient for live loads or non-structural uncertain dead loads γq := 1.5

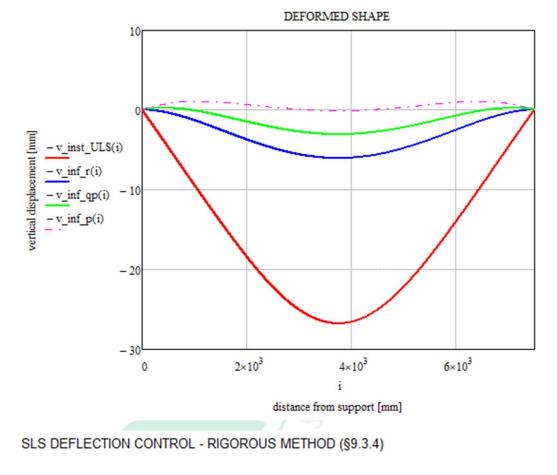
 $Mq_ULS(x) := (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q Mq_SLSr(x) := $(g1 + g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q Mq_SLSf(x) := $(g1 + g2 + \psi 1 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q Mq_SLSqp(x) := $(g1 + g2 + \psi 2 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q $Mq SLSg2(x) := (g1 + g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q $Mp_SLS(x) := if\left[x < lpt, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{x}{lpt}, if\left[x > L - lpt, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid) \cdot \frac{-x + L}{lpt}, \sigma pm(x,t) \cdot Ap_tot \cdot (Yp - Yid)\right]\right]$ contribution of prestressing equivalent load in SLS (without modification factors) i = 0 I.

ACTING MOMENT [kNm]

12.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

$$v_inf_p(x) \coloneqq \frac{v_SLSg1(x) \cdot (\varphi(t,2) - \varphi(t,23)) + v_SLSg2(x) \cdot (1 + \varphi(t,23))}{1.05}$$


deflection profile at 50 years including creep for permanent load combination

$$v_{inf_qp(x)} := \frac{v_{SLSg1(x)} \cdot (\varphi(t,2) - \varphi(t,23)) + v_{SLSg2(x)} \cdot (\varphi(t,23) - \varphi(t,91)) + v_{SLSqp(x)} \cdot (1 + \varphi(t,91))}{1.05}$$

deflection profile at 50 years including creep for quasi permanent load combination

$$v_{inf_r(x)} := \frac{v_{SLSg1(x)} \cdot (\varphi(t,2) - \varphi(t,23)) + v_{SLSg2(x)} \cdot (\varphi(t,23) - \varphi(t,91)) + v_{SLSqp(x)} \cdot \varphi(t,91) + v_{SLSr(x)}}{1.05}$$

deflection profile at 50 years including creep for rare load combination

 $v_inf_r\left(\frac{L}{2}\right) = 6.082 < \frac{L}{250} = 30$ CHECK maximum deflection values calculated from differential equations above $v_inf_p\left(\frac{L}{2}\right) = 0.123 > \frac{-L}{250} = -30$ CHECK maximum camber

233

SLS STRESS CONTROL (§9.2.1)

NOTE: the denomination of the allowable stress coefficients following k factors was kept similar to that of EN1992-1-1:2002

$$\sigma cpg1_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id} \qquad \sigma cpg1_bot(lpt1) = elastic stress of bottom concrete chord for selfweight loads only
$$\sigma cpg1_top(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (-Yid)}{Ixo_id} \qquad \sigma cpg1_top(lpt1) = elastic stress of top concrete chord for selfweight loads only
$$\sigma cpg1_tops(x) := \frac{Es}{Ecm} \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSg1(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (ds_1 - Yid)]}{Ixo_id} \right] \qquad \sigma cpg1_tops(lpt1)$$$$$$

elastic stress of top series of mild steel for selfweight loads only

$$\sigma cpf_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSf(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id} \qquad \qquad \sigma cpf_bot\left(\frac{L}{2}\right) = -idt + \frac{idt}{2} + \frac{idt$$

elastic stress of bottom concrete chord for frequent load combination

$$\sigma cpr_bot(x) := \frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (Htot - Yid)}{Ixo_id} \qquad \sigma cpr_bot\left(\frac{L}{2}\right) = 2.$$

elastic stress of bottom concrete chord for rare load combination

$$\sigma cpr_top(x) := \frac{-Np_tot \cdot rinf}{Aid} + \frac{[Mq_SLSr(x) - rinf \cdot Np_tot \cdot (Yp - Yid)] \cdot (-Yid)}{Ixo_id} \qquad \sigma cpr_top\left(\frac{L}{2}\right) = -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_{j=1}$$

elastic stress of top concrete chord for rare load combination

$$\sigma cpr_p(x) := \sigma pm(x,t) \cdot rsup + 15 \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (dp_{jp} - Yid)}{Ixo_id} \right] \quad \sigma cpr_p\left(\frac{L}{2}\right) = 1.25$$

creep stress of bottom prestressing steel for rare load combination

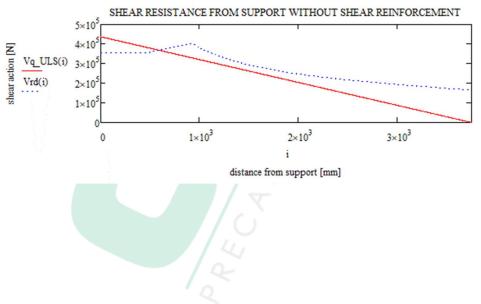
$$\sigma cpr_s(x) := 15 \cdot \left[\frac{-Np_tot \cdot rsup}{Aid} + \frac{[Mq_SLSr(x) - rsup \cdot Np_tot \cdot (Yp - Yid)] \cdot (ds_{js} - Yid)}{Ixo_id} \right] \qquad \qquad \sigma cpr_s\left(\frac{L}{2}\right) = 15.6$$

creep stress of bottom mild steel for rare load combination

LIN 1332-1-1.2002 $\frac{-3}{100}$ k1· β cc(2) $\frac{-3}{100}$ fck = -18.733 CHECK $\sigma cpg1_bot(lpt1) = -12.091$ > > $k2 \cdot fck = -20.25$ fctmj(2) = 2.731 $\sigma cpg1_top(1pt1) = 4.893$ < $k3 \cdot fsk = 400$ $\sigma cpg1_tops(lpt1) = 20.366$ < $\sigma cpf_bot\left(\frac{L}{2}\right) = -0.196$ < fctm = 3.795 CHECK $\sigma cpr_bot\left(\frac{L}{2}\right) = 2.368$ < fctm = 3.795 $\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -16.443$ > $k1 \cdot fck = -27$ CHECK > $0.4 \cdot fcm = -21.2$ $\sigma cpr_p(\frac{L}{2}) = 1.272 \times 10^3 \le k5 \cdot fptk = 1.488 \times 10^3$ CHECK $\sigma cpr_s\left(\frac{L}{2}\right) = 15.667$ < k3.fsk = 400 CHECK SLS CRACK CONTROL (§9.2.3) $c_act := Htot - ds_{is} - 10 = 32$ ksurf := min $\left(1.5, \frac{c_act}{10 + cmin_dur_s}\right) = 1.5$ wlim_cal := $0.2 \cdot \text{ksurf} = 0.3$ mm wlim_cal = 0.3w_freq := 0 < CHECK

12.10 ULS checks

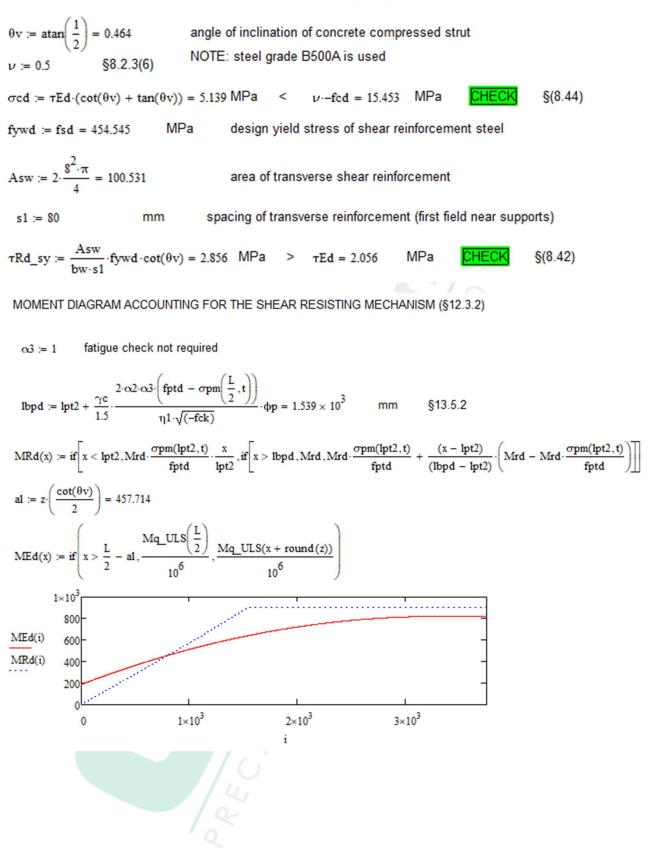
ULS BENDING-AXIAL CONTROL (§8.1)	
$Mrd = 898.613 \text{ kNm} > \frac{Mq_ULS\left(\frac{L}{2}\right)}{10^6}$	= \$16.428 CHECK
resisting moment calculated from moment-curvatu	ure diagram above
ULS SHEAR CONTROL (§8.2)	
$Vq_ULS(x) := \left (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} - x\right) \right $	shear action distribution at Ultimate Limit State (ULS)
d := Yp = 508.571 mm	effective depth of cross-section
$VEd := Vq_ULS(d) = 3.764 \times 10^5 N$	design shear action at control section at distance d from support
$\gamma v := 1.3$	safety factor for initial shear check
bw := 400 mm	design web width
$z := 0.9 \cdot d = 457.714$	conventional lever arm of internal stress resultants
$\tau Ed := \frac{VEd}{bw \cdot z} = 2.056$ MPa	equivalent mean acting shear stress on control cross-section
Dlower := 16 mm	maximum aggregate diameter following assumed mix design
ddg := min $\left[if \left[-fck > 60, 16 + Dlower \cdot \left(\frac{60}{-fck} \right)^2, 16 + Dlower \cdot \left(\frac{60}{-fck} \right)^2 \right]$	ver, 40 = 32 size parameter



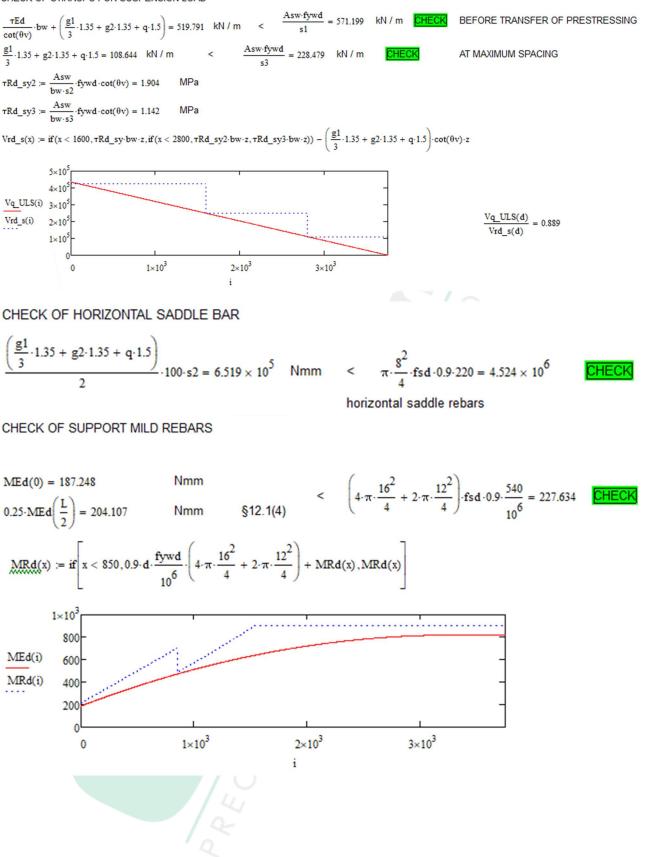
MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT (§8.2.2)

$$\begin{aligned} & \pi Rdc_min(x) := \frac{11}{\gamma v} \cdot \sqrt{\frac{-fck}{(fptd - \sigma pm(x,t))} \cdot \frac{ddg}{d}} & \S(8.20) \\ & \pi Rdc_min(d) = 0.618 & MPa & \text{not checked with } \pi Ed > detailed evaluation is mandatory following §8.2.1 \\ & Ap_tot + \sum_{j=1}^{js} As_{j} \\ & \rhol(x) := \frac{Ap_tot + \sum_{j=1}^{js} As_{j}}{bw \cdot d} & \text{longitudinal geometric reinforcement ratio } \S(8.28) \\ & ep := Yp - Yid = 166.426 & mm & \text{eccentricity of prestressing} \\ & acs_0(x) := max(\frac{Mq_ULS(x)}{Vq_ULS(x)}, d) & \S(8.30) \text{ accounting for comments in } \S8.2.2(5) \\ & kl_{\delta}(x) := min\left[\frac{0.5}{acs_0(x)} \left(ep + \frac{d}{3}\right) \cdot \frac{Ac}{bw \cdot z}, 0.18 \cdot \frac{Ac}{bw \cdot z}\right] & \S(8.34) \\ & av_0(x) := \sqrt{\frac{\pi cs_0(x)}{4} \cdot d} & \S(8.29) \text{ accounting for comments in } \S8.2.2(5) \\ & \pi Rdc_0(x) := \sqrt{\frac{\pi cs_0(x)}{4} \cdot d} & \S(8.33) \\ & \tau Rdcmax(x) := min\left[2.15 \cdot \pi Rdc_0(x) \cdot \left(\frac{acs_0(x)}{d}\right)^{\frac{1}{6}}, 2.7 \cdot \pi Rdc_0(x)\right] & \S(8.35) \\ & \sigma cp(x) := \sigma pm(x, t) \cdot \frac{Ap_tot}{Ac} & \S(8.33) \end{aligned}$$

 $\tau Rdc(x) := max(min(\tau Rdc_0(x) + k1(x) \cdot \sigma cp(x), \tau Rdcmax(x)), \tau Rdc_min(x))$ §(8.32)


 $Vrd(x) := bw \cdot z \cdot \tau Rdc(x)$

MEMBERS PROVIDED WITH SHEAR REINFORCEMENT (§8.2.3)



238

CHECK OF STIRRUPS FOR SUSPENSION LOAD

239

ANCHORAGE (§11.4)

klb := 50 kcp := 1 for good bond conditions $n\sigma := \frac{3}{2}$ cs := 50 cx := 75 cy := 40 $\operatorname{cd}(\varphi) := \min(0.5 \cdot \operatorname{cs}, \operatorname{cx}, \operatorname{cy}, 3.75 \cdot \varphi)$ $\operatorname{cd}(12) = 25$ $\operatorname{Ibd}(\varphi) := \max\left[\operatorname{klb} \cdot \operatorname{kcp} \cdot \varphi \cdot \left(\frac{\operatorname{fsd}}{435}\right)^{n\sigma} \cdot \left(\frac{25}{-\operatorname{fck}}\right)^{\frac{1}{2}} \cdot \left(\frac{\varphi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1.5 \cdot \varphi}{\operatorname{cd}(\varphi)}\right)^{\frac{1}{2}}, 10 \cdot \varphi\right]$

1bd(12) = 341.872

 $\frac{1bd(12)}{12} = 28.489$

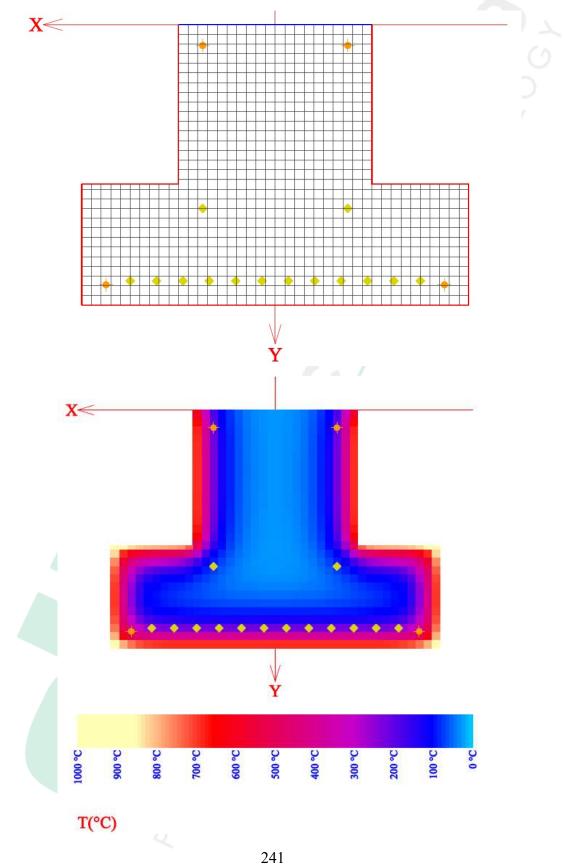
length of straight part for 90° bent bars

 $1b90(\phi) := max(70, 1bd(\phi) - 15 \cdot \phi, 10 \cdot \phi)$

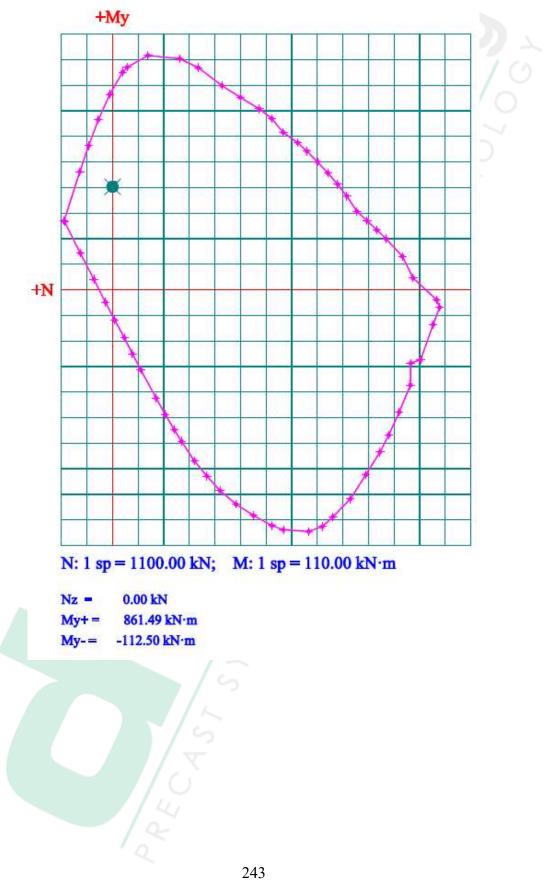
1b90(12) = 161.872 1b90(16) = 339.319

length of straight part for 135° bent bars (stirrups)

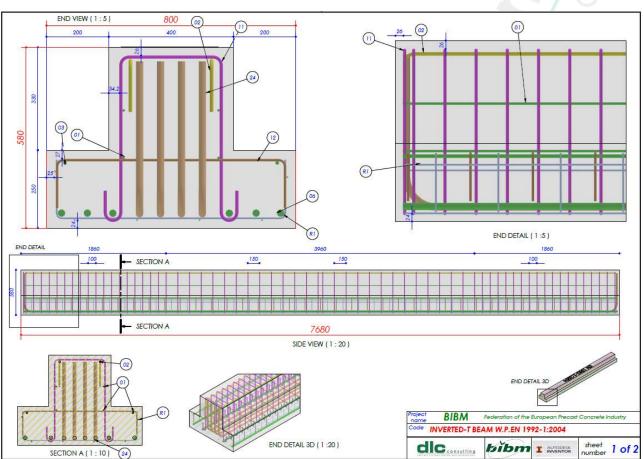
 $1b135(\phi) := max(50, 1bd(\phi) - 15 \cdot \phi, 5 \cdot \phi)$


1b135(12) = 161.872 1b135(8) = 50

12.11 Fire checks



6	29	34	44	60	83	120	212	386	684										
6	29	35	44	60	83	121	212	387	684	-									
:6	29	35	45	60	83	121	213	387	685										
:6	29	35	45	60	83	121	213	388	685										
6	29	35	45	60	83	121	213	387	685										
6	29	35	45	60	83	121	213	387	685										
6	29	34	44	60	83	121	212	387	684										
:6	29	34	44	59	82	119	211	386	684	-									
6	28	34	43	59	81	117	209	383	682										
6	28	33	43	57	79	111	205	377	678										
5	27	32	41	56	77	100	196	363	665										
5	27	31	39	53	73	100	178	329	626	8									
4	26	30	37	49	67	97	149	262	500	726	768	780	786	790	795	805	823	853	903
4	26	29	35	44	59	80	100	175	290	414	469	493	505	515	530	555	601	683	823
5	26	28	33	40	51	66	86	113	165	217	252	274	289	303	324	361	428	548	760
6	27	29	32	37	45	56	69	86	100	129	149	161	170	182	206	253	332	473	724
9	30	31	33	37	42	49	58	69	80	92	100	100	100	119	145	192	279	432	705
5			20	40	43	48	54	60	67	74	81	86	92	100	105	163	251	412	696
	35	36	38	40	43	40	34	UV	0/	14	01	00	-		a second		-		
5	35 45	36 46	38 47	40	45 50	40 53	56	60	65	69	74	79	86	94	1000	-	241	404	692
	2000				1					1000					1000	155	241 245		
0	45	46	47	48	50	53	56	60	65	69	74	79	86	94 97	100	155 158		407	693
i0 14	45 60	46 61	47 61 84	48 62	50 63	53 65 86	56 67 87	60 69	65 72 90	69 75	74 79	79 83 100	86 89 100	94 97 100	100 100	155 158 175	245	407 421	693 700
i0 14 22	45 60 84	46 61 84	47 61 84 122	48 62 85	50 63 85	53 65 86 123	56 67 87	60 69 89 125	65 72 90 127	69 75 93 129	74 79 96	79 83 100 136	86 89 100 143	94 97 100	100 100 129 174	155 158 175	245 264 303	407 421 451	693 700 714
i0 4 22 13	45 60 84 122	46 61 84 122 213	47 61 84 122 213	48 62 85 122	50 63 85 123	53 65 86 123 213	56 67 87 124	60 69 89 125 214	65 72 90 127 215	69 75 93 129 216	74 79 96 132 217	79 83 100 136	86 89 100 143 226	94 97 100 153 238	100 100 129 174 261	155 158 175 220 303	245 264 303	407 421 451	692 693 700 714 741 789



13 Reinforced beam element -EN1992-1:2004

13.1 Shop drawings

Thumbriai	Part Number	QIY	Mass	Total mass	Ø_	Ø_longitudinal	pattern_T	Ø_transverse	pattern_L							
	01	4	3011	12044	8 mm										\sim	
/	02	2	7032	14064	12 mm						/		4	SCROBS		
/	03	2	6774	13548	12 mm						J.					
/	06	4	27096	108384	24 mm											
/	08	2	14489	28978	24 mm											
1	11	65	982	<mark>638</mark> 30	10 mm											
~	12	39	402	15678	8 mm											
	24	4	30184	120736	24 mm											
Ţ	Total mass rebars	[kg]	4	377,26	l Ir	ncidence kg/m³	147,95									
	RI	1	19373	19373		6 mm	200 mm	6 mm	200 mm							
mass weld	led-wire-meshes	[kg]		19.37	Ir	ncidence kg/mª	7,60			-						
										Project name	BIBM				cast Concrete In	dustry
Te	otal mass of steel	Ikal		396.64		Total concrete	volume Im ^a	2,55	4	-				992-1:2004	S 115	
		1-91		010,04			a source for f	2,00		d	Consultin	. 15	ibm		skeet number	2 of 2

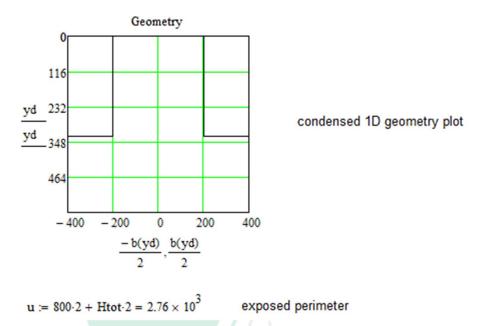
13.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

$$y_tr := (0 \ 329.99 \ 330 \ 580)^T$$


Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b_tr} &:= (400 \ 400 \ 800 \ 800)^T\\ \textbf{r_circ} &:= 0 \qquad \text{radius of central void pipe}\\ \textbf{x_circ}(\textbf{y}) &:= 2 \sqrt{\textbf{r_circ}^2 - \left(\textbf{y} - \frac{\text{Htot}}{2}\right)^2}\\ \textbf{b_lin}(\textbf{y}) &:= \text{linterp}(\textbf{y_tr}, \textbf{b_tr}, \textbf{y})\\ \textbf{b_circ}(\textbf{y}) &:= \text{linterp}(\textbf{y_tr}, \textbf{b_tr}, \textbf{y}) - \textbf{x_circ}(\textbf{y})\\ \textbf{b}(\textbf{y}) &:= \text{if}\left[\textbf{y} \leq \left(\frac{\text{Htot}}{2} + \textbf{r_circ}\right) \land \textbf{y} \geq \frac{\text{Htot}}{2} - \textbf{r_circ}, \textbf{b_circ}(\textbf{y}), \textbf{b_lin}(\textbf{y})\right] \end{split}$$

<u>yd</u> := 0.. Htot

FCHNOLOGY

bibm

Longitudinal mild reinforcement

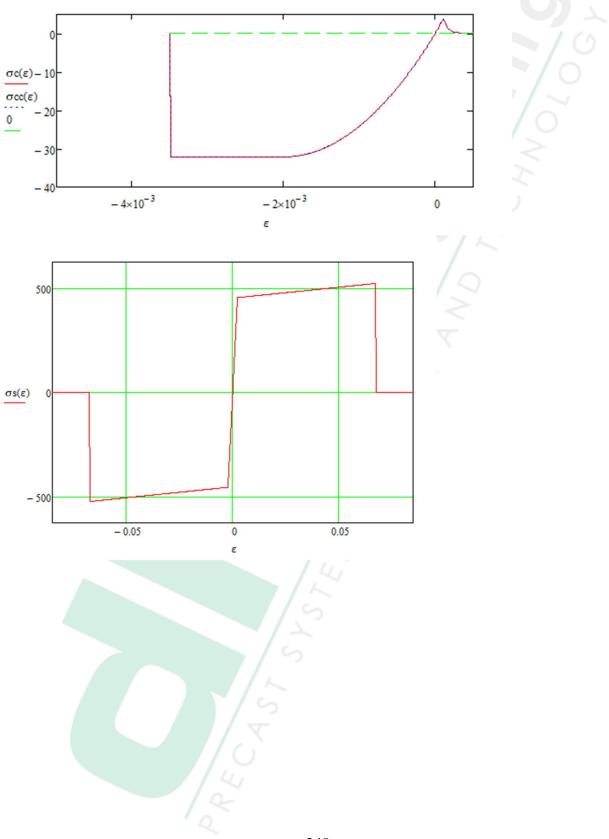
Area of single rebar:

$$\underline{A}(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (43 \ 202 \ 354 \ 370 \ 488 \ 538)^T$ Area of reinforcement at each depth

 $\mathbf{As} := \begin{pmatrix} 2 \cdot \mathbf{A}(12) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 0 \cdot \mathbf{A}(24) & 10 \cdot \mathbf{A}(24) \end{pmatrix}^{\mathrm{T}}$

js := rows(As) js = 6


dsmax := max(ds) dsmax = 538

As_tot :=
$$\sum_{j=1}^{j_s} As_j = 5.052 \times 10^3$$

13.3 Material constitutive laws employed in the calculation

13.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{Htot} b(y) \, dy \qquad Ac = 3.321 \times 10^{5}$$

 $\rho s := \frac{As_tot}{Ac} = 0.015$

geometric ratio for longitudinal mild reinforcement

 ρ tot := $\frac{As_tot}{Ac} = 0.015$ total geometric ratio for longitudinal reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy$$
 Syc = 1.128×10^{8}

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 339.696$

Second moment of the concrete area

Ixo_cls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 \, dy \qquad \text{Ixo_cls} = 8.927 \times 10^9$$

Idealisation coefficients (elastic)

$$ns := \frac{Es}{Ecm}$$
 $ns = 5.512$

Area of ideal cross-section

Aid := Ac + (ns - 1)
$$\cdot \sum_{j=1}^{js} As_j$$
 Aid = 3.549 × 10⁵

First moment of the reinforced concrete area

Sxid := Ac·yG + (ns - 1)
$$\cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$
 Sxid = 1.243 × 10⁸

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 350.13

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^2 \, dy - \sum_{j=1}^{js} \left[\text{As}_j \cdot (ds_j - \text{Yid})^2 \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

```
Ixo_id := Ixoidc1s + Ixoidlenta
```

$Ixo_id = 9.79 \times 10^9$	mm^4

 $\frac{\text{Ixo_id}}{\text{Ixo_cls}} = 1.097$

13.5 Loads

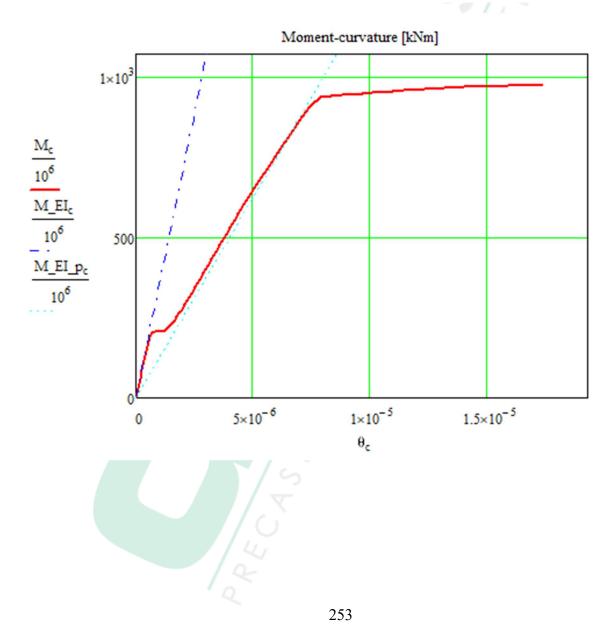
LOADS

20/120	
g1 := Ac·0.000025 = 8.302 kN/m	dead load from self-weight
g2 := (2 + 2.89)·9.45 = 46.211 kN/m	nonstructural dead load
q := 28.35 kN/m	live load
L = 7500 mm calculation les	ngth (span between supports)
ψ2 := 0.3 non-contemporaneity fac	tor for quasi-permanent load combination
ψ1 := 0.5 non-contemporaneity fac	tor for frequent load combination
	SLS bending moment distribution from self-weight load
Mq_SLSg2(x) := (g2) $\cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ S	SLS bending moment distribution from nonstructural dead load
Mq_SLSq(x) := $(q \cdot \psi_2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$ S	SLS bending moment distribution from live load

13.6 Time-dependent behaviour

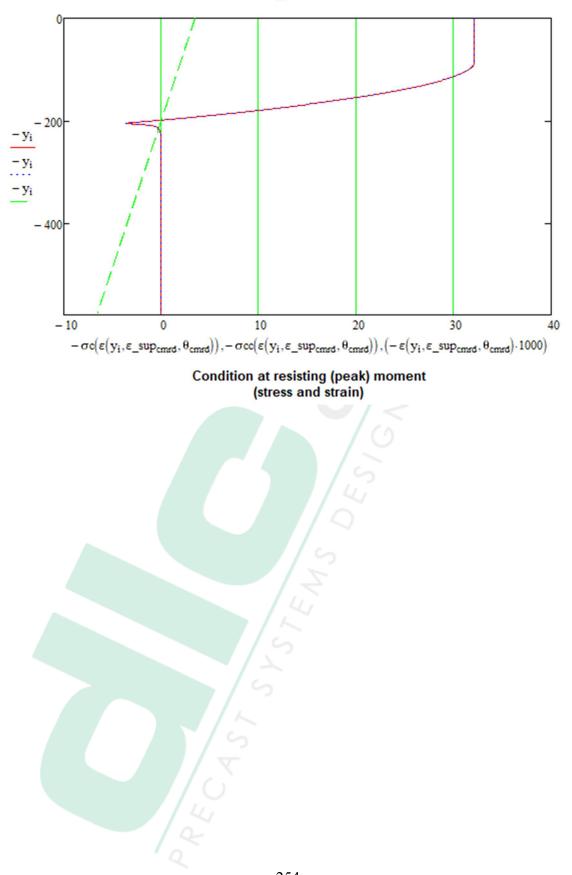
DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B) $h0 := 2 \cdot \frac{Ac}{n} = 240.643$ mm notional size of the member relative humidity RH := 50 % t0_T(t0) := t0 for cement class R $\alpha := 1$ $t0_mod(t0) := max \left[t0_T(t0) \cdot \left(\frac{9}{2 + t0 T(t0)^{1.2}} + 1 \right)^{\alpha}, 0.5 \right]$ time modification due to type of cement §B.9 $t0_{mod}(2) = 6.189$ $\alpha c1 := \left(\frac{35}{-fcm}\right)^{0.7} = 0.748$ $\alpha c_3 := \left(\frac{35}{-fcm}\right)^{0.5} = 0.813$ $\beta h := if \left[-fcm > 35, min \left[1.5 \cdot \left[1 + (0.012 \cdot RH)^{18} \right] \cdot h0 + 250 \cdot \alpha c3, 1500 \cdot \alpha c3 \right], min \left[1.5 \cdot \left[1 + (0.012 \cdot RH)^{18} \right] \cdot h0 + 250, 1500 \right] \right] = 564.161 \cdot 10^{-10}$ $\beta t0(t0) := \frac{1}{0.1 + t0_{mod}(t0)^{0.2}}$ $\beta c(t,t0) \coloneqq \left(\frac{t - t0_mod(t0)}{\beta h + t - t0 \mod(t0)}\right)^{0.3}$ $\beta fcm := \frac{16.8}{\sqrt{-fcm}} = 2.308$ $\varphi RH := if \left[-fcm > 35, \left(1 + \frac{1 - \frac{RH}{100}}{0.1 \cdot \sqrt[3]{h0}} \cdot \alpha c1\right) \cdot \alpha c2, 1 + \frac{1 - \frac{RH}{100}}{0.1 \cdot \sqrt[3]{h0}}\right] = 1.474$ $\varphi 0(t0) := \varphi RH \cdot \beta fcm \cdot \beta t0(t0)$ $\varphi(t,t0) := \varphi 0(t0) \cdot \beta c(t,t0)$ $t := 50.365 = 1.825 \times 10^4$ $\varphi(t,2) = 2.188$ $\varphi(t, 91) = 1.304$ φ(days, 2) φ(days, 23) (days, 91)1 5×10³ 1×10⁴ 1.5×10⁴ 0 days

13.7 Non-linear moment-curvature diagram

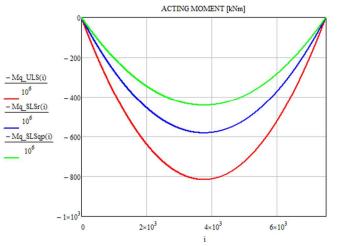

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

$$\underbrace{\mathbb{N}}_{i=1} (\varepsilon_{sup,\theta}) \coloneqq \sum_{i=1}^{Htot} (\sigma c (\varepsilon (y_{i}, \varepsilon_{sup,\theta})) \cdot b (y_{i}) \cdot \Delta y) + \sum_{j=1}^{js} (\sigma s (\varepsilon (ds_{j}, \varepsilon_{sup,\theta})) \cdot As_{j})$$

$$\mathbf{M}(\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta}) \coloneqq \sum_{i\,=\,1}^{Htot} \left[\boldsymbol{\sigma} \mathbf{c} \Big(\boldsymbol{\varepsilon} \Big(\mathbf{y}_i, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \Big) \Big) \cdot \mathbf{b} \Big(\mathbf{y}_i \Big) \cdot \boldsymbol{\Delta} \mathbf{y} \cdot \Big(\mathbf{y}_i - \mathbf{y} \mathbf{G} \Big) \right] + \sum_{j\,=\,1}^{js} \left[\boldsymbol{\sigma} \mathbf{s} \Big(\boldsymbol{\varepsilon} \Big(\mathtt{ds}_j, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \Big) \Big) \cdot \mathbf{As}_j \cdot \Big(\mathtt{ds}_j - \mathbf{y} \mathbf{G} \Big) \right]$$


Design external axial load

NS := -0



13.8 Bending moment distribution

- $\gamma g1 := 1.35$ partial safety coefficient for self-weight structural loads
- γg2 := 1.35 partial safety coefficient for non-structural certain dead loads
- γq := 1.5 partial safety coefficient for live loads or non-structural uncertain dead loads

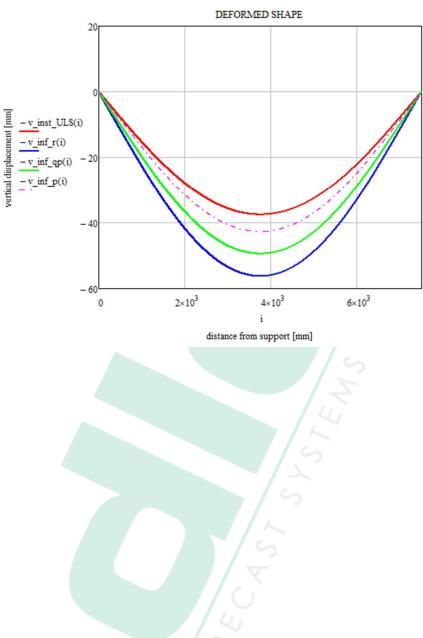
$$\begin{split} &\mathrm{Mq_ULS}(x):=(g1{\cdot}\gamma g1+g2{\cdot}\gamma g2+q\cdot\gamma q){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)\\ &\mathrm{Mq_SLSr}(x):=(g1+g2+q){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)\\ &\mathrm{Mq_SLSf}(x):=(g1+g2+\psi 1{\cdot}q){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)\\ &\mathrm{Mq_SLSqp}(x):=(g1+g2+\psi 2{\cdot}q){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)\\ &\mathrm{Mq_SLSqp}(x):=(g1+g2+\psi 2{\cdot}q){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)\\ &\mathrm{Mq_SLSqp}(x):=(g1+g2){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)\\ &\mathrm{Mq_SLSqp}(x):=(g1+g2){\cdot}\left(\frac{L}{2}{\cdot}x-\frac{x^2}{2}\right)$$

moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q

13.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

 $v_{inf_p(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (1 + \varphi(365 \cdot 50, 23))$


deflection profile at 50 years including creep for permanent load combination

 $v_{inf_qp(x)} \coloneqq v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (1 + \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)}$

deflection profile at 50 years including creep for quasi permanent load combination

 $v_{inf_r(x)} := v_{SLSg1(x)} \cdot (\varphi(365 \cdot 50, 2) - \varphi(365 \cdot 50, 23)) + v_{SLSg2(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot \varphi(365 \cdot 50, 91) + v_{SLSr(x)} + v_{SLSr(x)} \cdot (\varphi(365 \cdot 50, 23) - \varphi(365 \cdot 50, 91)) + v_{SLSqp(x)} \cdot (\varphi(365 \cdot 50, 91) + v_{SLSqp(x)} + v_{S$

deflection profile at 50 years including creep for rare load combination

SLS DEFLECTION CONTROL - RIGOROUS METHOD (§7.4.3) $\frac{-L}{250} = -30$ CHECK camber := 30 mm > maximum camber imposed camber by mould shaping $< \frac{L}{250} = 30$ $v_{inf_r}\left(\frac{L}{2}\right)$ - camber = 26.235 CHECK maximum deflection value calculated from differential equations above SLS STRESS CONTROL (§7.2) k1 := 0.6 k2 := 0.45 k3 := 0.8 k4 := 1 k5 := 0.75 $\sigma \texttt{cpf_bot}(x) \coloneqq \frac{Mq_SLSf(x) \cdot (Htot - Yid)}{Ixo_id}$ $\sigma cpf_bot\left(\frac{L}{2}\right) = 11.34$ < fctm = 3.795 CHECK elastic stress of bottom concrete chord for frequent load combination if not -> cracked $\sigma sf_bot(x) := 15 \cdot \left[\frac{Mq_SLSf(x) \cdot \left(ds_{js} - Yid \right)}{Ixo_id} \right]$ $\sigma sf_bot\left(\frac{L}{2}\right) = 139.018$ creep stress of bottom reinforcement layer for frequent load combination $\sigma cpr_bot(x) := \frac{Mq_SLSr(x) \cdot (Htot - Yid)}{-}$ $\sigma \operatorname{cpr_bot}\left(\frac{L}{2}\right) = 13.68$ fctm = 3.795 Ixo id elastic stress of bottom concrete chord for rare load combination $\sigma cpr_top(x) := \frac{Mq_SLSr(x) \cdot (-Yid)}{-Yid}$ $\sigma cpr_top\left(\frac{L}{2}\right) = -20.837$ > $k1 \cdot fck = -27$ CHECK Ixo_id $0.4 \cdot fcm = -21.2$ elastic stress of top concrete chord for rare load combination $\sigma cpr_s(x) := 15 \cdot \left[\frac{Mq_SLSr(x) \cdot (ds_{js} - Yid)}{Ixo_{id}} \right]$ $\sigma cpr_s\left(\frac{L}{2}\right) = 167.707$ < $k3 \cdot fsk = 400$ CHECK creep stress of bottom mild steel for rare load combination

SLS CRACK CONTROL (§7.3) $c_{act} := Htot - ds_{is} - 10 = 32$ ksurf := min $\left(1.5, \frac{c_act}{10 + cmin_dur_s}\right) = 1.5$ mm whim cal := 0.2k1c := 0.8 $\phi := 24$ k2c := 0.5 k3c := 3.4 k4c := 0.425 cover := Htot $-\frac{\phi}{2} - ds_{1s} = 30$ Aceff := b(Htot) $\cdot \min \left[2.5 \cdot \left(\text{Htot} - \text{ds}_{js} \right), \frac{\text{Htot} - \text{Yn}_n}{3}, \frac{\text{Htot}}{2} \right] = 8.4 \times 10^4$ $ppeff := \frac{As_{js} + As_{js-1}}{Aceff} = 0.054$ srmax := k3c·cover + $\frac{k1c\cdot k2c\cdot k4c\cdot \varphi}{\rho peff}$ = 177.758 NOTE : 0.6 for sustained loading kt := 0.4 fcteff := fctm = 3.795 $\left[\frac{\sigma \text{sf_bot}\left(\frac{L}{2}\right) - \text{kt} \cdot \frac{\text{fcteff}}{\rho \text{peff}} \cdot \left(1 + \frac{\text{Es}}{\text{Ecm}} \cdot \rho \text{peff}\right)}{\text{Es}}, 0.6 \cdot \frac{\sigma \text{sf_bot}\left(\frac{L}{2}\right)}{\text{Es}}\right] = 5.123 \times 10^{-4}$ $\varepsilon sm \varepsilon cm := max$ wk := srmax ε sm_ ε cm = 0.091 whim cal = 0.2CHECK

13.10 ULS checks

ULS BENDING-AXIAL CONTROL (§6.1)	
Mrd = 974.72 > $\frac{Mq_ULS\left(\frac{L}{2}\right)}{10^6}$	= 816.449 CHECK
resisting moment calculated from moment-curva	ature diagram above
ULS SHEAR CONTROL (§6.2)	
$Vq_ULS(x) := \left (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} - x\right) \right $	shear distribution at Ultimate Limit State (ULS)
d := ds. = 538 mm	effective depth
VEd := Vq_ULS(d) = 3.73×10^5 N	maximum shear at effective depth from support
bw := 400 mm	web width
$z := 0.9 \cdot d = 484.2$	conventional resultant lever arm

MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT (§6.2.2)

$$\sum_{j=1}^{J^{S}} As_{j}$$

$$\rho 1 := \frac{j = 1}{bw \cdot d} = 0.023$$
reinforcement ratio
$$\sigma cp(x) := 0 \qquad \text{MPa} \qquad \text{axial load induced by prestressing}$$

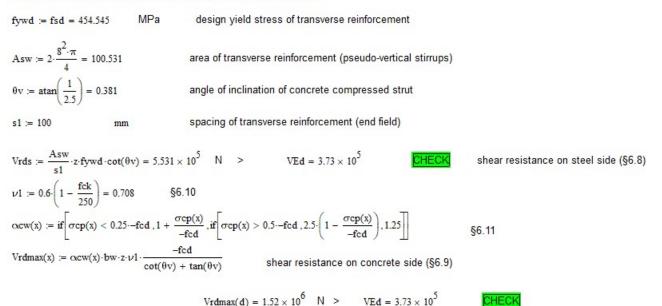
$$kv := min\left(1 + \frac{200}{d}, 2\right) = 1.372$$

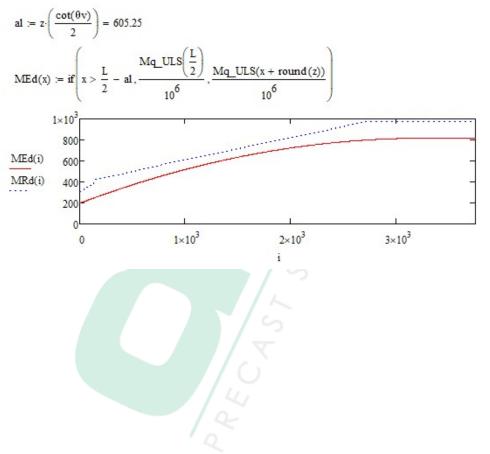
$$k1v := 0.15$$

$$Crdc := \frac{0.18}{\gamma cpcred} = 0.129$$

$$vmin := 0.035 \cdot k^{\frac{3}{2}} \cdot (-fck)^{\frac{1}{2}} = 0.61 \qquad \text{§6.3N}$$

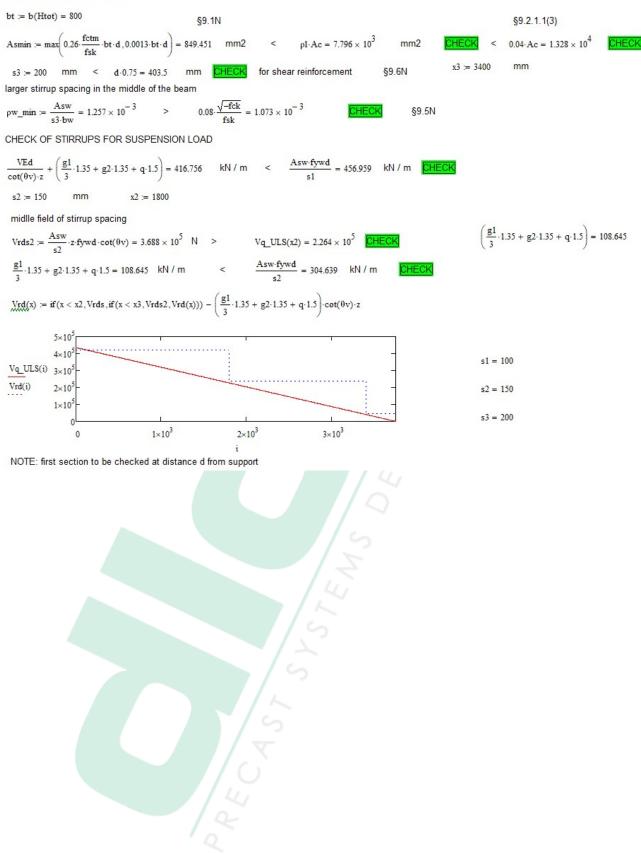
$$bw \cdot d \cdot \left[Crdc \cdot k + \frac{1}{3} + k1v \cdot \sigma cp(x)\right] \cdot bw \cdot d, (vmin + k1v \cdot \sigma cp(x)) \cdot bw \cdot d\right] \qquad (vmin + k1v \cdot \sigma cp(x)) \cdot bw \cdot d$$




MEMBERS PROVIDED WITH SHEAR REINFORCEMENT (§6.2.3)

 $VIuIIIax(u) = 1.52 \times 10^{-10} VIu = 5.55 \times 10^{-10}$

MOMENT DIAGRAM ACCOUNTING FOR SHIFTING DUE TO SHEAR RESISTING MECHANISM (§9.2.1.3)


 $\mathbf{MRd}(\mathbf{x}) \coloneqq \mathbf{if}\left(\mathbf{x} < 140, \frac{4}{10} \cdot \mathbf{Mrd} \cdot \frac{\mathbf{x} + 500}{640}, \mathbf{if}\left(\mathbf{x} < 640, \frac{4}{10} \cdot \mathbf{Mrd} + \frac{4}{10} \cdot \mathbf{Mrd} \cdot \frac{\mathbf{x}}{1800}, \mathbf{if}\left(\mathbf{x} < 2720, \frac{8}{10} \cdot \mathbf{Mrd} + \frac{2}{10} \cdot \mathbf{Mrd} \cdot \frac{\mathbf{x} - 1800}{2720 - 1800}, \mathbf{Mrd}\right)\right)\right)$

MINIMUM REINFORCEMENT

.....

A 4 4 4 4 4

CHECK OF HORIZONTAL SADDLE BAR

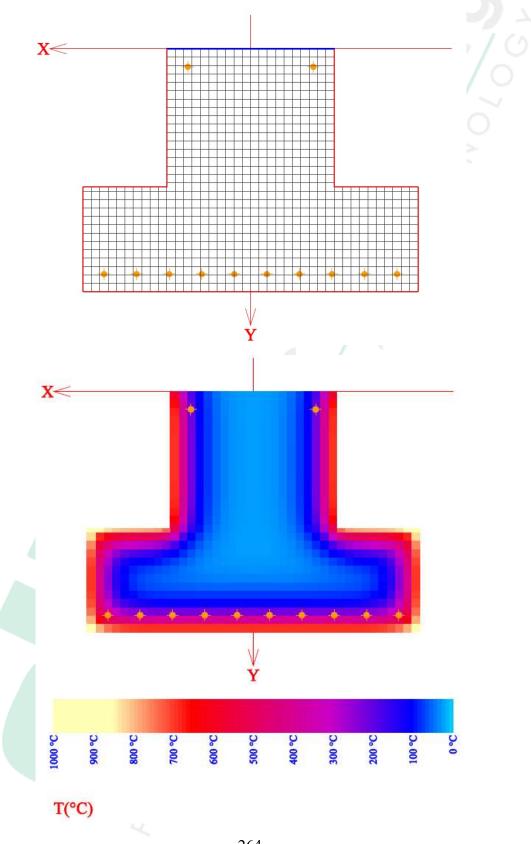
$$\frac{\left(\frac{g1}{3} \cdot 1.35 + g2 \cdot 1.35 + q \cdot 1.5\right)}{2} \cdot 100 \cdot s2 = 8.148 \times 10^5 \text{ Nmm} < \pi \cdot \frac{8^2}{4} \cdot \text{fsd} \cdot 0.9 \cdot 220 = 4.524 \times 10^6 \text{ CHECK}$$

CHECK OF SUPPORT MILD REBARS (§9.2.1.4(1))

$$0.25 \cdot \text{Mrd} = 243.68 \qquad \text{Nmm} \qquad < \qquad \left(3 \cdot \pi \cdot \frac{16^2}{4} + 4 \cdot \pi \cdot \frac{12^2}{4}\right) \cdot \text{fsd} \cdot 0.9 \cdot \frac{540}{10^6} = 233.186 \qquad \boxed{\text{CHECK}}$$

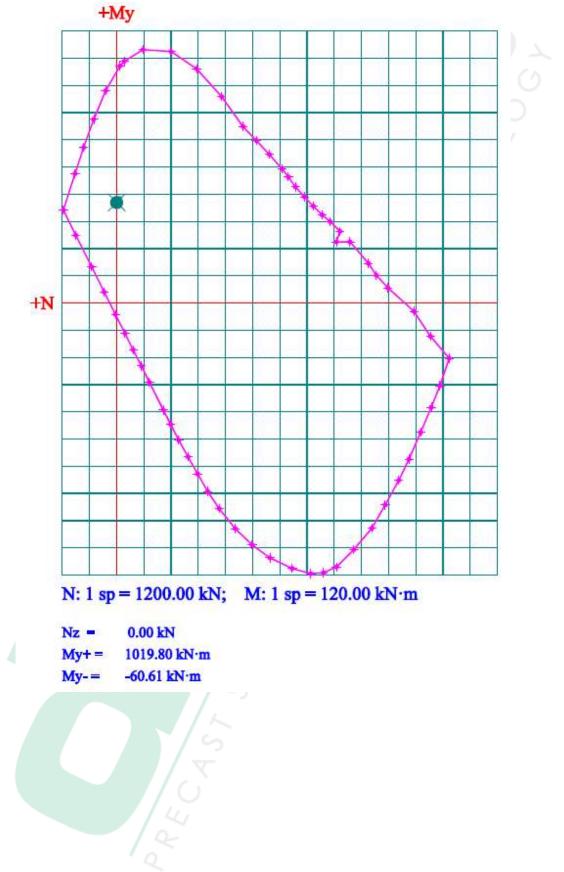
ANCHORAGE (§8.4)

 $\eta 1 := 1$ $\eta 2 := 1$ $fbd := 2.25 \cdot \eta 1 \cdot \eta 2 \cdot fctd = 4.27$ $lbrqd(\phi) := \frac{\phi}{4} \cdot \frac{fsd}{fbd}$ $\alpha 1b := 1$ $\alpha 2b := 1$ $\alpha 3b := 1$ $\alpha 4b := 1$ $\alpha 5b := 1$

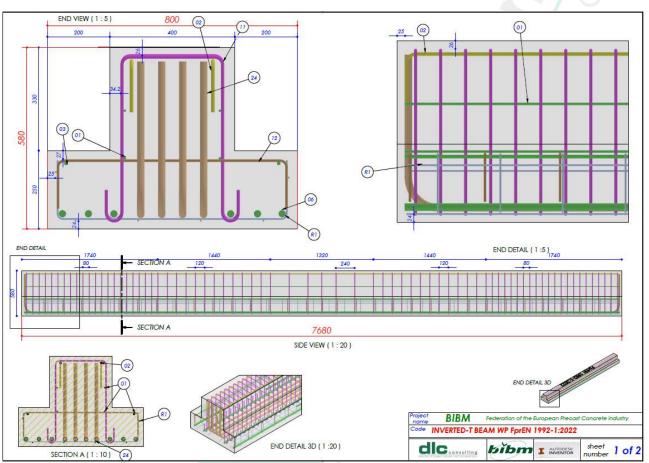

 $lbd(\phi) := \alpha lb \cdot \alpha 2b \cdot \alpha 3b \cdot \alpha 4b \cdot \alpha 5b \cdot lbrqd(\phi)$

263

13.11 Fire checks



	22	23	27	34	47	70	100	204	363	657										
	22	23	27	34	48	72	100	214	381	678										
	22	23	27	35	49	73	103	218	388	684	1									
	22	23	27	35	49	73	105	220	391	686										
	22	24	27	35	49	73	106	220	392	687										
	22	24	27	35	50	73	107	220	392	687										
	22	24	27	35	50	73	107	221	392	687										
	22	24	27	35	50	73	107	221	392	687	1									
	22	24	27	35	50	73	107	220	392	687										
	22	24	27	35	49	73	106	220	392	687										
	22	23	27	35	49	73	105	220	391	686										
	22	23	27	35	49	72	102	218	389	685										
	22	23	27	34	48	71	100	214	383	681										
	22	23	26	33	46	69	100	205	369	669										
	21	23	26	32	44	65	100	187	338	632										
	21	22	25	30	40	58	92	154	275	508	730	771	782	787	790	795	805	822	853	902
	21	22	24	28	35	49	73	100	186	300	422	476	498	508	517	529	554	600	681	823
	21	22	23	26	31	41	57	80	104	174	227	261	280	291	303	322	358	425	546	759
	22	22	23	25	29	35	45	59	78	100	119	144	159	169	181	202	247	328	471	723
	24	24	24	26	28	31	37	46	56	68	78	89	98	100	100	130	183	274	430	704
	27	28	28	29	30	32	35	40	45	52	57	63	69	76	86	100	153	247	410	69:
	35	35	35	36	36	38	39	42	44	48	51	55	59	66	77	97	140	237	403	692
	50	50	50	50	50	51	52	53	54	56	58	60	63	69	80	100	145	241	406	693
	73	73	73	73	73	74	74	75	75	76	77	78	81	87	97	100	166	259	419	699
	107	107	107	107	107	107	107	108	108	109	110	112	116	124	140	165	213	299	448	713
1	-			-											-				505	
	221	22				_					-				-		-		-	
					392	392	392	392	392	392	392	393	394	397	403	418	448	505	608	788



14 Reinforced beam element – FprEN1992-1:2022

14.1 Shop drawings

umbnail	Port Number	QTY	Mass	Total mass	Ø_	Ø_longitudinal	pattern_T	Ø_transverse	pattern_L							
	01	4	3011	12044	8 mm									al an		
/	02	2	7032	14064	12 mm								ISCA	SSIG		
/	03	2	6774	13548	12 mm						Y	//				
/	06	4	27096	108384	24 mm											
siter	07	2	18396	36792	24 mm											
η	11	73	982	71686	10 mm											
\leq	12	34	402	13668	8 mm											
	24	4	30184	120736	24 mm											
Т	lotal mass reban	[kg]		390,92	lr	cidence kg/m³	153,30									
	RI	τ	19373	19373		6 mm	200 mm	6 mm	200 mm							
nass weld	le d-wire-meshe:	(Kgj		19,37	ir	icidence kg/m³	7,60			Project name Code	BIBM				st Concrete Indu	stry
I	otal mass of stee	Ikai		410,30		Total concrete	volume Im ^a	2,55			Consulting	1			sheet 2	_

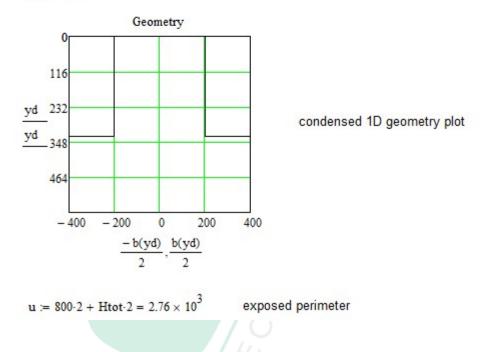
14.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

$$y_{tr} := (0 \ 329.99 \ 330 \ 580)^{T}$$


Htot := max(y_tr)

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \mathbf{b}_{tr} &:= (400 \ 400 \ 800 \ 800)^{T} \\ \mathbf{r}_{circ} &:= 0 \qquad \text{radius of central void pipe} \\ \mathbf{x}_{circ}(\mathbf{y}) &:= 2 \sqrt{\mathbf{r}_{circ}^{2} - \left(\mathbf{y} - \frac{\mathrm{Htot}}{2}\right)^{2}} \\ \mathbf{b}_{lin}(\mathbf{y}) &:= \mathrm{linterp}(\mathbf{y}_{tr}, \mathbf{b}_{tr}, \mathbf{y}) \\ \mathbf{b}_{circ}(\mathbf{y}) &:= \mathrm{linterp}(\mathbf{y}_{tr}, \mathbf{b}_{tr}, \mathbf{y}) - \mathbf{x}_{circ}(\mathbf{y}) \\ \mathbf{b}(\mathbf{y}) &:= \mathrm{linterp}(\mathbf{y}_{tr}, \mathbf{b}_{tr}, \mathbf{y}) - \mathbf{x}_{circ}(\mathbf{y}) \\ \mathbf{b}(\mathbf{y}) &:= \mathrm{if} \left[\mathbf{y} \leq \left(\frac{\mathrm{Htot}}{2} + \mathbf{r}_{circ} \right) \land \mathbf{y} \geq \frac{\mathrm{Htot}}{2} - \mathbf{r}_{circ}, \mathbf{b}_{circ}(\mathbf{y}), \mathbf{b}_{lin}(\mathbf{y}) \right] \end{split}$$

yd := 0.. Htot

bibm

Longitudinal mild reinforcement

Area of single rebar:

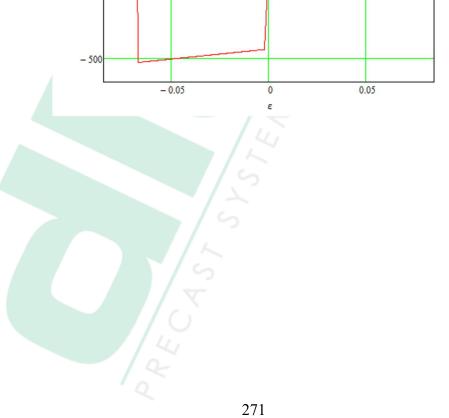
$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (43 \ 202 \ 354 \ 370 \ 488 \ 538)^T$ Area of reinforcement at each depth

 $\mathbf{As} := \begin{pmatrix} 2 \cdot \mathbf{A}(12) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 2 \cdot \mathbf{A}(8) & 0 \cdot \mathbf{A}(24) & 10 \cdot \mathbf{A}(24) \end{pmatrix}^{\mathrm{T}}$

js := rows(As) js = 6

dsmax := max(ds) dsmax = 538


As_tot :=
$$\sum_{j=1}^{j_s} As_j = 5.052 \times 10^3$$

$\sigma c(\varepsilon) - 10$ σcc(ε) - 20 0 - 30 -40- 4×10⁻³ - 3×10⁻³ - 2×10⁻³ - 1×10⁻³ 1×10⁻³ 0 ε 500 σ<mark>s(ε)</mark> 0

14.3 Material constitutive laws employed in the calculation

14.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{\text{Htot}} b(y) \, dy \qquad Ac = 3.321 \times 10^{5}$$

$$\rho s := \frac{As_tot}{Ac} = 0.015$$

geometric ratio for longitudinal mild reinforcement >>

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy$$
 Syc = 1.128 × 10⁸

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac} \qquad \qquad yG = 339.696$$

Second moment of the concrete area

Ixo_cls := $\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy$ Ixo_cls = 8.927 × 10⁹

ns = 5.605

Idealisation coefficients (elastic)

 $ns := \frac{Es}{Ecm}$

Area of ideal cross-section

Aid := Ac + (ns - 1)
$$\cdot \sum_{j=1}^{js} As_j$$
 Aid = 3.553 × 10⁵

First moment of the reinforced concrete area

Sxid := Ac·yG + (ns - 1)
$$\cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$
 Sxid = 1.245 × 10⁸

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 Yid = 350.33

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^2 \, dy - \sum_{j=1}^{js} \left[\text{As}_j \cdot (ds_j - \text{Yid})^2 \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

```
Ixo_id := Ixoidcls + Ixoidlenta
```

$Ixo_{id} = 9.807 \times 10^9$	mm^4

$$\frac{\text{Ixo_id}}{\text{Ixo_cls}} = 1.099$$

14.5 Loads

LOADS

$g1 := Ac \cdot 0.000025 = 8.302$	kN/m	dead load from self-weight	
g2 := (2 + 2.89)·9.45 = 46.211	kN/m	nonstructural dead load	
q := 28.35 kN/m		live load	
L = 7500 mm calc	ulation leng	th (span between supports)	
$\psi 2 := 0.3$ non-contempora	aneity facto	or for quasi-permanent load combination	
		or for frequent load combination	
Mq_SLSg1(x) := (g1) $\cdot \left(\frac{L}{2} \cdot x - \frac{L}{2}\right)$	$\left(\frac{x^2}{2}\right)$ SL	S bending moment distribution from self-weight load	
$Mq_SLSg2(x) := (g2) \cdot \left(\frac{L}{2} \cdot x - \frac{L}{2} \cdot x\right)$	$\left(\frac{x^2}{2}\right)$ SL	S bending moment distribution from nonstructural dead load	
$Mq_SLSq(x) := (q \cdot \psi 2) \cdot \left(\frac{L}{2} \cdot x\right)$	$-\frac{x^2}{2}$ SL	S bending moment distribution from live load	

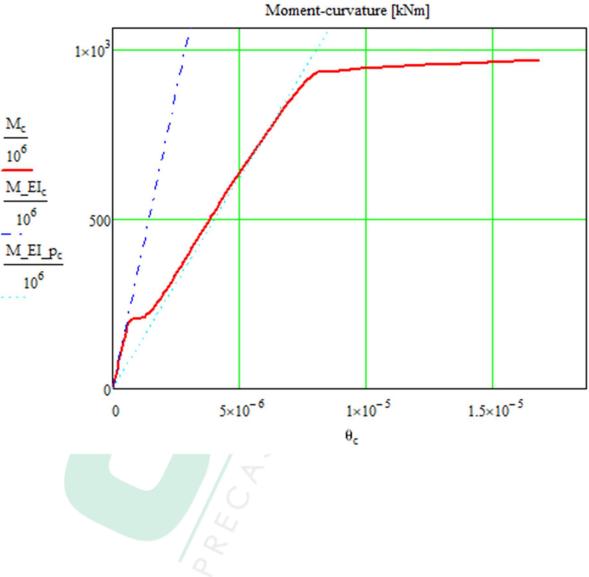
14.6 Time-dependent behaviour

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

$$\begin{aligned} \ln &= 2 \frac{Ac}{u} = 240.643 \\ \text{RH} &= 50 \\ \text{($0_{a}dg(t0) = t0$)} \\ ($0_{c}_{a}f(m) = \frac{1.8}{(-fcm)^{0.7}} = 0.112 \\ ($0_{c}_{a}f(m) = \frac{1.8}{(-fcm)^{1.4}} = 1.588 \\ ($-fcm)^{1.4} = 1.588 \\ ($-fcm)^{1.4} = 1.588 \\ ($-fcm)^{1.4} = 0.804 \\ \hline \\ ($3dc_{c}RH = \frac{1}{3} - \frac{\text{RH}}{100} = 0.804 \\ \hline \\ ($3dc_{c}t0(t0) = \frac{1}{0.1 + t0_{a}dg(t0)^{0.2}} \\ ($10_{c} - \frac{1}{2.3 + \frac{3.5}{\sqrt{t0_{a}dg(t0)}}} \\ ($10_{c} - \frac{1}{2.3 + \frac{1}{\sqrt{t0_{a}dg(t0)}}} \\ ($10_{c} - \frac{1}{2.3 + \frac{1}{\sqrt{t0_{a}dg(t0)}} \\ ($10_{c} - \frac{1}{2.3$$

days

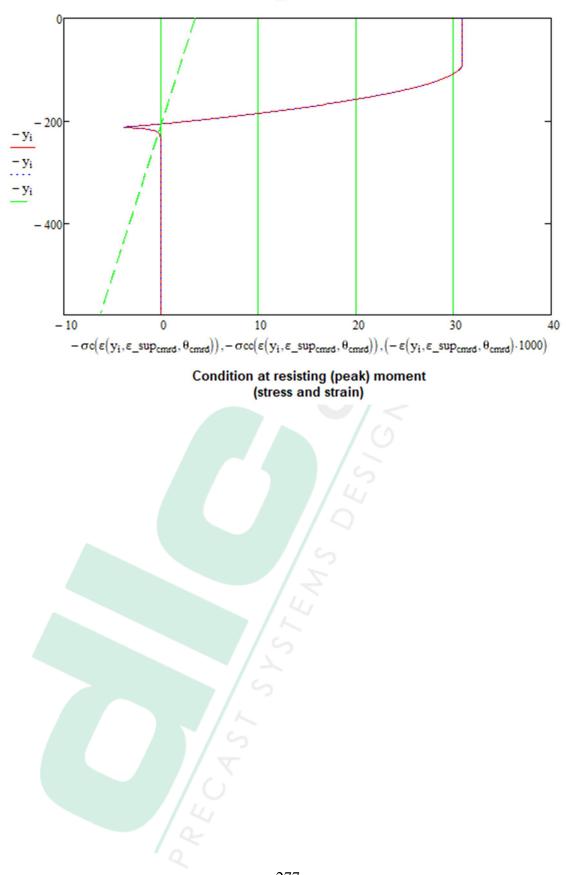
14.7 Non-linear moment-curvature diagram


Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

$$\underbrace{\mathbb{N}}_{i}(\varepsilon_\mathtt{sup},\theta) \coloneqq \sum_{i=1}^{Htot} \left(\sigma c \Big(\varepsilon \Big(y_i, \varepsilon_\mathtt{sup}, \theta \Big) \Big) \cdot b \Big(y_i \Big) \cdot \Delta y \Big) + \sum_{j=1}^{js} \left(\sigma s \Big(\varepsilon \Big(\mathtt{ds}_j, \varepsilon_\mathtt{sup}, \theta \Big) \Big) \cdot As_j \Big) \right)$$

$$\mathbf{M}(\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta}) \coloneqq \sum_{i\,=\,1}^{Htot} \left[\boldsymbol{\sigma} \mathbf{c} \Big(\boldsymbol{\varepsilon} \Big(\mathbf{y}_i,\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta} \Big) \Big) \cdot \mathbf{b} \Big(\mathbf{y}_i \Big) \cdot \boldsymbol{\Delta} \mathbf{y} \cdot \Big(\mathbf{y}_i - \mathbf{y} \mathbf{G} \Big) \right] + \sum_{j\,=\,1}^{js} \left[\boldsymbol{\sigma} \mathbf{s} \Big(\boldsymbol{\varepsilon} \Big(\mathtt{ds}_j,\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta} \Big) \Big) \cdot \mathbf{As}_j \cdot \Big(\mathtt{ds}_j - \mathbf{y} \mathbf{G} \Big) \right]$$

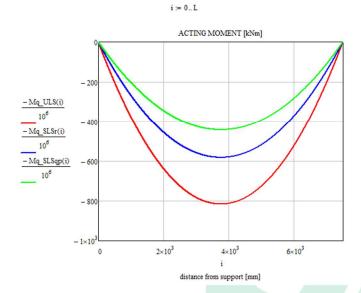
Design external axial load


NS := -0

276

14.8 Bending moment distribution

Mq_SLSf(x) := $(g1 + g2 + \psi 1 \cdot q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right)$


Mq_SLSqp(x) := $(g1 + g2 + \psi 2 \cdot q) \cdot \left[\frac{L}{2} \cdot x\right]$

 $\operatorname{Mg}_{sLSg2}(x) := (g1 + g2) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2} \right)$

$$\begin{split} \gamma_{g1} &:= 1.35 & \text{partial safety coefficient for self-weight structural loads} \\ \gamma_{g2} &:= 1.35 & \text{partial safety coefficient for non-structural certain dead loads} \\ \gamma_{q2} &:= 1.5 & \text{partial safety coefficient for live loads or non-structural uncertain dead loads} \\ Mq_ULS(x) &:= (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right) & \text{moment distribution at Ultimate Limit :} \\ Mq_SLSr(x) &:= (g1 + g2 + q) \cdot \left(\frac{L}{2} \cdot x - \frac{x^2}{2}\right) & \text{moment distribution at Serviceability Limit :} \\ \end{split}$$

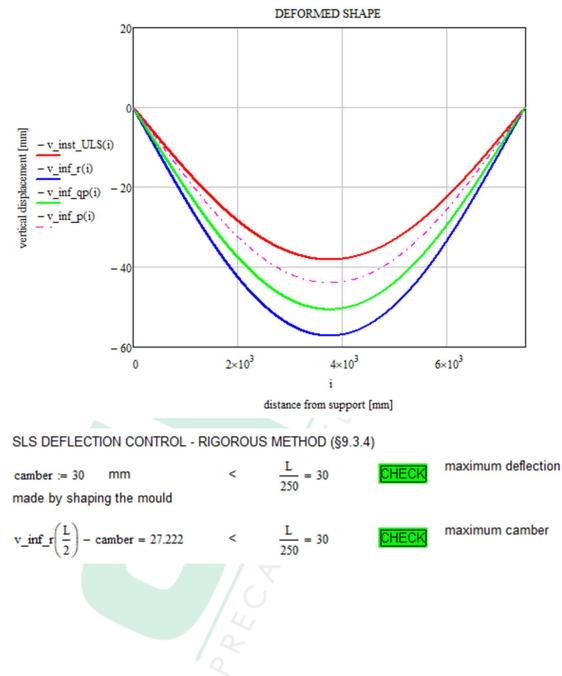
 $-\frac{x^2}{2}$

moment distribution at Ultimate Limit State (ULS) fundamental load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) rare load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) frequent load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) quasi permanent load combination following a uniformally distributed load q
 moment distribution at Serviceability Limit State (SLS) permanent load combination following a uniformally distributed load q

14.9 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

$$v_{inf_p(x)} := \frac{v_{SLSg1(x)} \cdot (\varphi(t,2) - \varphi(t,23)) + v_{SLSg2(x)} \cdot (1 + \varphi(t,23))}{1.05}$$


deflection profile at 50 years including creep for permanent load combination

$$v_{inf_qp(x)} := \frac{v_{SLSg1(x)} \cdot (\varphi(t,2) - \varphi(t,23)) + v_{SLSg2(x)} \cdot (\varphi(t,23) - \varphi(t,91)) + v_{SLSqp(x)} \cdot (1 + \varphi(t,91))}{1.05}$$

deflection profile at 50 years including creep for quasi permanent load combination

$$v_{inf_r(x)} \coloneqq \frac{v_SLSg1(x) \cdot (\varphi(t,2) - \varphi(t,23)) + v_SLSg2(x) \cdot (\varphi(t,23) - \varphi(t,91)) + v_SLSqp(x) \cdot \varphi(t,91) + v_SLSr(x)}{1.05}$$

deflection profile at 50 years including creep for rare load combination

SLS STRESS CONTROL (§9.2.1)

k1 := 0.6

k2 := 0.45

k3 := 0.8

k4 := 1

0.75 in EN1992-1-1:2002 k5 := 0.8

-

NOTE: the denomination of the allowable stress coefficients following k factors was kept similar to that of EN1992-1-1:2002

$$\sigma cpf_bot(x) := \frac{Mq_SLSf(x) \cdot (Htot - Yid)}{Ixo_id} \qquad \qquad \sigma cpf_bot\left(\frac{L}{2}\right) = 11.$$
elastic stress of bottom concrete chord for selfweight loads only
$$\sigma sf_bot(x) := 15 \cdot \left[\frac{Mq_SLSf(x) \cdot (ds_{js} - Yid)}{Ixo_id}\right] \qquad \qquad \sigma sf_bot\left(\frac{L}{2}\right) = 138.0$$

elastic stress of top concrete chord for selfweight loads only

$$\sigma cpr_bot(x) := \frac{Mq_SLSr(x) \cdot (Htot - Yid)}{Ixo_id} \qquad \sigma cpr_bot\left(\frac{L}{2}\right) = 13.$$

elastic stress of top series of mild steel for selfweight loads only $\frac{Mq_SLSr(x) \cdot (-Yid)}{Ixo_id}$ $\sigma cpr_top(x) :=$

$$\sigma \operatorname{cpr_top}\left(\frac{L}{2}\right) = -20$$

$$\sigma cpr_s(x) := 15 \cdot \left[\frac{Mq_SLSr(x) \cdot (ds_{js} - Yid)}{Ixo_i d} \right]$$

$$\sigma cpf_bot\left(\frac{L}{2}\right) = 11.31 \qquad < fctm = 3.795 \qquad CHECK$$
if not -> cracked

$$\sigma sf_bot\left(\frac{L}{2}\right) = 138.63$$

$$\sigma cpr_bot\left(\frac{L}{2}\right) = 13.644 \qquad < fctm = 3.795$$

$$\sigma cpr_top\left(\frac{L}{2}\right) = -20.813 \qquad > k1 \cdot fck = -27 \qquad CHECK \\ > 0.4 \cdot fcm = -21.2 \qquad \qquad \\ \sigma cpr_s\left(\frac{L}{2}\right) = 167.239 \qquad < k3 \cdot fsk = 400 \qquad CHECK$$

SLS CRACK CONTROL (§9.2.3)

$$c_{act} := Htot - ds_{js} - 10 = 32$$

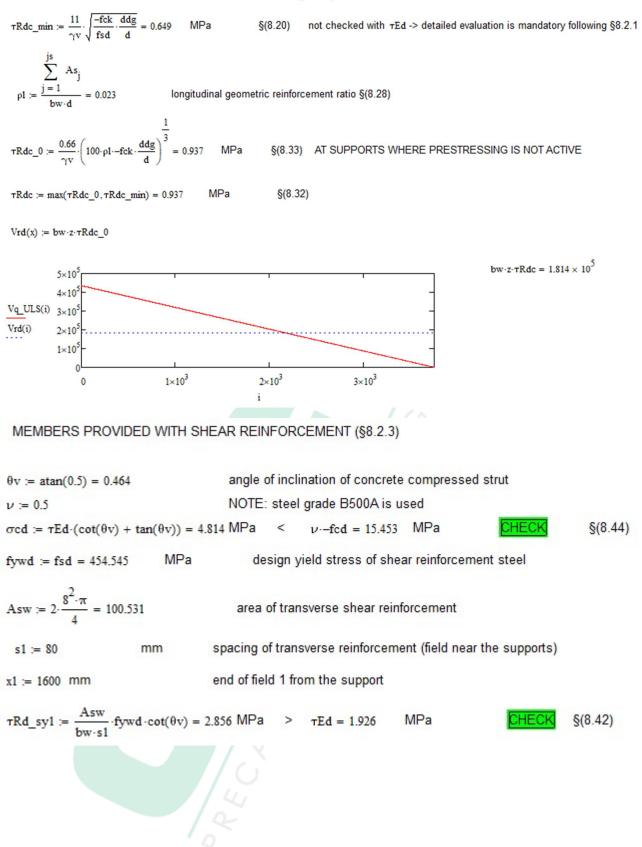
$$ksurf := min \left(1.5, \frac{c_{act}}{10 + cmin_{a}dw_{ast}}\right) = 1.5$$
wim_cal := 0.2-ksurf = 0.3 mm
$$kw := 1.7$$
ayi := Htot - ds_{js} = 42 $\varphi := 24$

$$kl_{ast} := \frac{Htot - Yn_{a}n}{Htot - ayi - Yn_{a}n} = 1.121$$

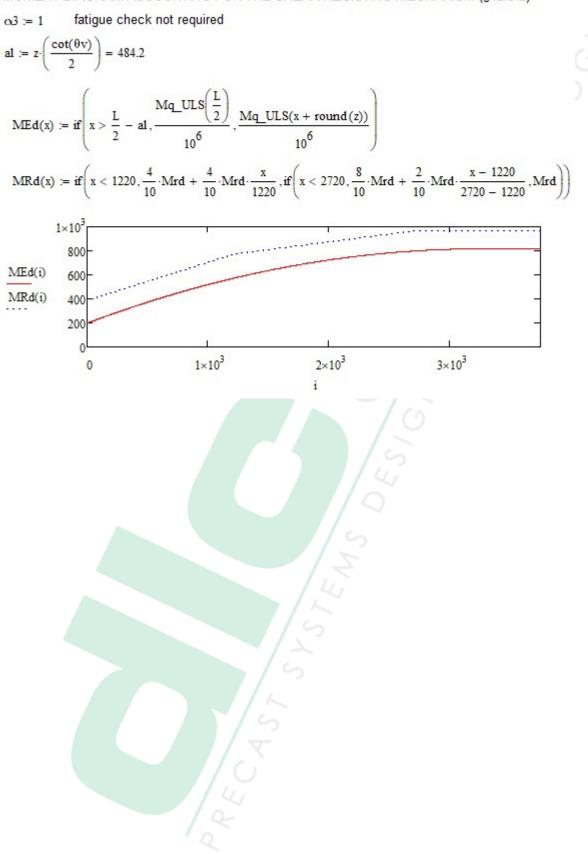
$$kl := \frac{Htot - min(ayi + 5 + \phi, ayi 3.5)}{Htot} = 0.747$$

$$kb := 1.2$$
Aceff := 0.5-b(Htot) min(ayi + 5 + \phi, ayi 3.5) = 5.88 \times 10^{4}
$$\rho peff := \frac{As_{js} + As_{js-1}}{Aceff} = 0.077$$
smcal := min $\left[1.5 \left(Htot - ds_{js} + \frac{\Phi}{2}\right) + \frac{kfl \cdot kb}{7.2} \cdot \frac{\phi}{\rho peff}, \frac{1.3}{kw} (Htot - Yn_{a}n)\right] = 119.814$

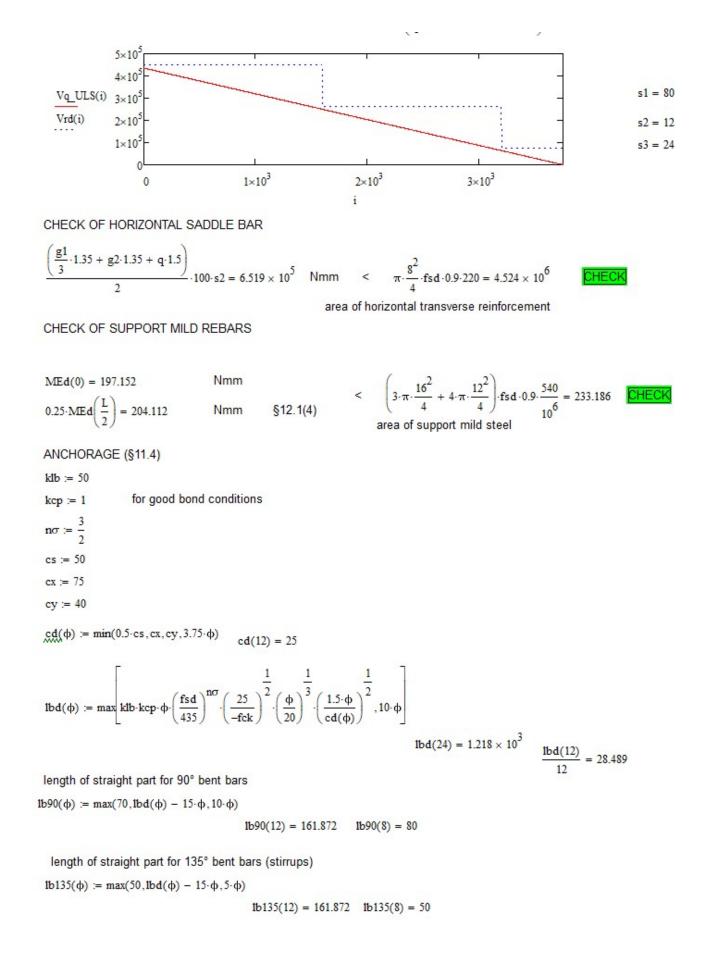
$$kt := 0.4 \quad NOTE : 0.6 \text{ for sustained loading}$$
feteff := fetm = 3.795
$$\varepsilon sm_{a}\varepsilon cm := mat \left[\frac{\sigma sf_{a}bot(\frac{L}{2}) - kt \cdot \frac{fcteff}{\rho peff} \cdot \left(1 + \frac{Es}{Ecm} \cdot \rho peff\right), (1 - kt) \cdot \frac{\sigma sf_{a}bot(\frac{L}{2})}{Es}\right] = 5.519 \times 10^{-4}$$
wkcal := kw-kl_{a}r \cdot smcal \cdot \varepsilon sm_{a}\varepsilon cm = 0.126 < wim_cal = 0.3
$$HECK$$


14.10 ULS checks

ULS BENDING-AXIAL CONTROL (§8.1)	
$Mrd = 967.352 \text{ kNm} > \frac{Mq_ULS\left(\frac{L}{2}\right)}{10^6}$	= 816.449 CHECK
resisting moment calculated from moment-curvate	ure diagram above
ULS SHEAR CONTROL (§8.2)	
$Vq_ULS(x) := \left (g1 \cdot \gamma g1 + g2 \cdot \gamma g2 + q \cdot \gamma q) \cdot \left(\frac{L}{2} - x\right) \right $	shear action distribution at Ultimate Limit State (ULS)
$\mathbf{d} := \mathbf{ds}_{js} = 538$ mm	effective depth of cross-section
VEd := $Vq_ULS(d) = 3.73 \times 10^5$ N	design shear action at control section at distance d from support
$\gamma v \coloneqq 1.3$	safety factor for initial shear check
bw := 400 mm	design web width
$z := 0.9 \cdot d = 484.2$	conventional lever arm of internal stress resultants
$\tau Ed := \frac{VEd}{bw \cdot z} = 1.926$ MPa	equivalent mean acting shear stress on control cross-section
Dlower := 16 mm	maximum aggregate diameter following assumed mix design
ddg := min $\left[if \left[-fck > 60, 16 + Dlower \cdot \left(\frac{60}{-fck} \right)^2, 16 + Dlower \cdot \left(\frac{60}{-fck} \right)^2 \right]$	wer $\left[, 40\right] = 32$ size parameter

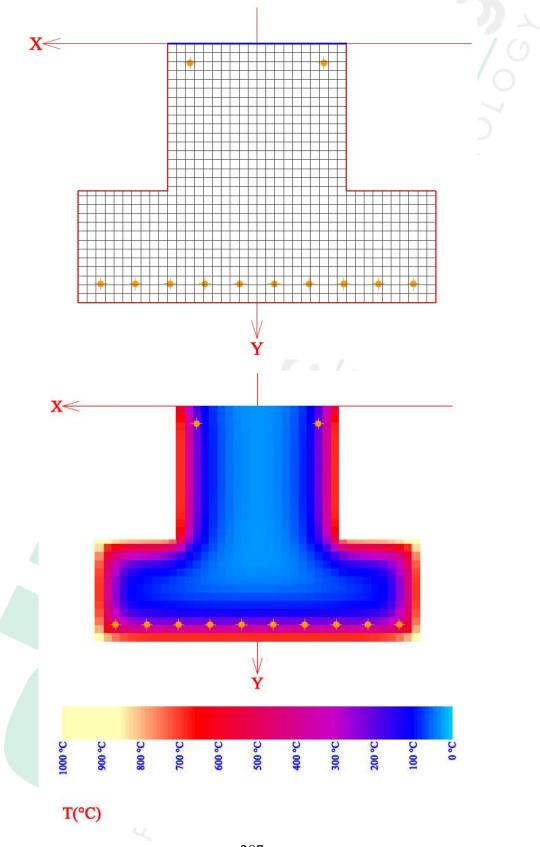

MEMBERS NOT PROVIDED WITH SHEAR REINFORCEMENT (§8.2.2)

MOMENT DIAGRAM ACCOUNTING FOR THE SHEAR RESISTING MECHANISM (§12.3.2)

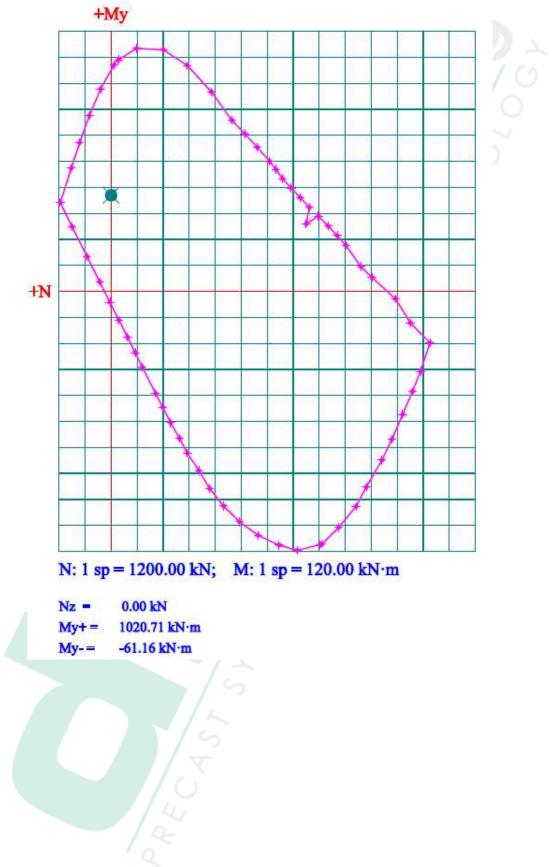


MINIMUM REINFORCEMENT (§12.2) $kh:=if[0.8-0.6\cdot(min(bw,Htot)-0.3)<0.5,0.5,if[0.8-0.6\cdot(min(bw,Htot)-0.3)>0.8,0.8,0.8-0.6\cdot(min(bw,Htot)-0.3)]]=0.5\\$ fct_eff := fctm As_min_w1 := $0.2 \cdot \text{kh} \cdot \text{fct}$ _eff $\cdot \frac{\text{Ac}}{\text{fsk}}$ = 252.084 mm2 As_tot = 5.052×10^3 §(9.2) mm2 CHECK $fctm \cdot \frac{Ixo_id}{(Htot - Yid) \cdot 10^6} = 162.068 \leq$ Mrd = 967.352 kNm CHECK §(12.1) s3 := 240 < 0.75 (Htot - 30) = 412.5 CHECK §12.1 $\rho w_min := \frac{Asw}{s3 \cdot bw} = 1.047 \times 10^{-3}$ > $0.08 \cdot \frac{\sqrt{-fck}}{fsk} = 1.073 \times 10^{-3}$ CHECK §(12.4) CHECK OF STIRRUPS FOR SUSPENSION LOAD $\frac{\tau Ed}{cot(\theta v)} \cdot bw + \left(\frac{g1}{3} \cdot 1.35 + g2 \cdot 1.35 + q \cdot 1.5\right) = 493.784 \quad kN \ / \ m \qquad < \qquad \frac{Asw \cdot fywd}{s1} = 571.199 \quad kN \ / \ m \qquad CHECK$ $\frac{\text{Asw-fywd}}{\text{s3}} = 190.4$ $\frac{g1}{3} \cdot 1.35 + g2 \cdot 1.35 + q \cdot 1.5 = 108.645$ kN / m kN / m CHECK < mm spacing of stirrups within field 2 s2 := 120 x2 := 3200 mm end of field 2 for stirrups $\tau Rd_sy2 := \frac{Asw}{bw \cdot s2} \cdot fywd \cdot cot(\theta v) = 1.904$ $\bigvee_{\mathsf{www}}^{\mathsf{Vrd}}(x) := \mathbf{if}(x < x1, \tau \mathbb{Rd}_{\mathsf{sy1}} \cdot \mathbf{bw} \cdot \mathbf{z}, \mathbf{if}(x < x2, \tau \mathbb{Rd}_{\mathsf{sy2}} \cdot \mathbf{bw} \cdot \mathbf{z}, \mathsf{Vrd}(x))) - \left(\frac{\mathsf{g1}}{3} \cdot 1.35 + \mathsf{g2} \cdot 1.35 + \mathsf{q2} \cdot 1.5\right) \cdot \mathsf{cot}(\theta \mathbf{v}) \cdot \mathbf{z}$ INCLUDING THE EFFECT OF SUSPENSION 5×10 4×10 s1 = 80 Vq_ULS(i) 3×10 Vrd(i) 2×10⁴ s2 = 1201×10⁴ s3 = 240 Vq_ULS(1600) = 0.947 1 3×10³ 1×10³ 2×10³ 0 Vrd(1600)

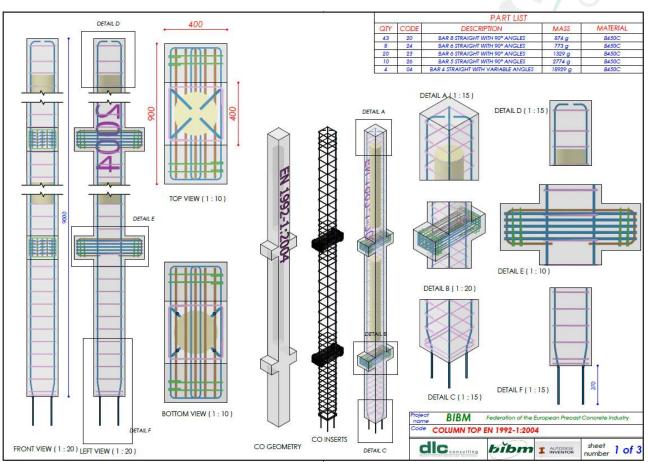
dic consulting

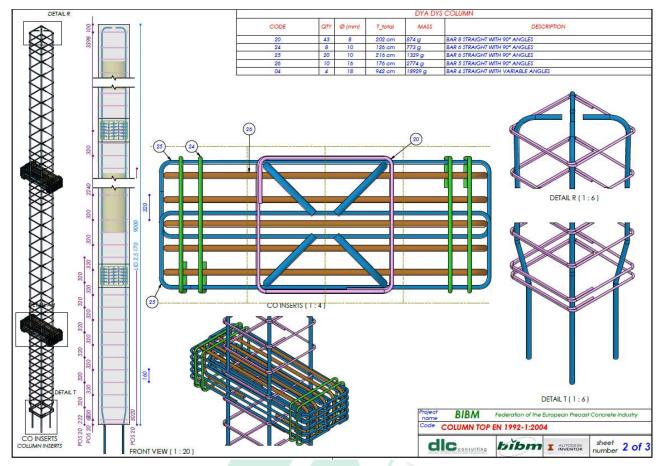


14.11 Fire checks

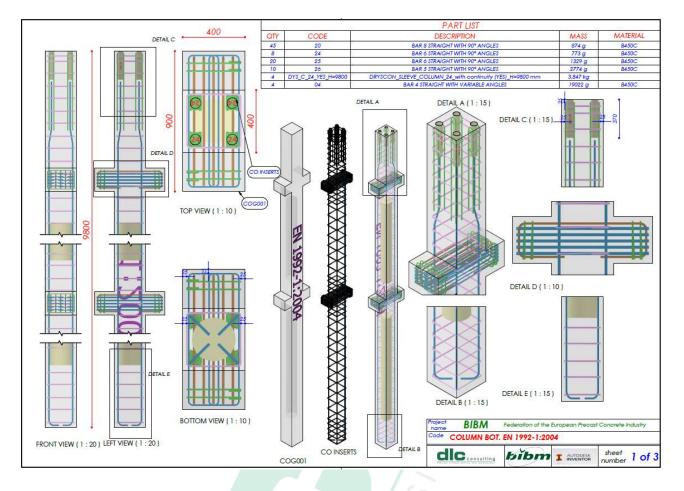


40		-	33	74	20	10	100	110		212										
26	26	28	33	42	57	78	101	196	359	655										
26	26	28	34	43	58	80	114	205	377	676										
26	26	29	34	44	59	82	118	210	384	682										
26	26	29	34	44	60	83	120	212	386	684										
26	26	29	35	44	60	83	121	212	387	684										
26	26	29	35	45	60	83	121	213	387	685										
26	26	29	35	45	60	83	121	213	388	685										
26	26	29	35	45	60	83	121	213	387	685										
26	26	29	35	45	60	83	121	213	387	685										
26	26	29	34	44	60	83	121	212	387	684										
26	26	29	34	44	59	82	119	211	386	684										
26	26	28	34	43	59	81	117	209	383	682										
26	26	28	33	43	57	79	111	205	377	678										
25	25	27	32	41	56	77	100	196	363	665										
25	25	27	31	39	53	73	100	178	329	626										
24	24	26	30	37	49	67	97	149	262	500	726	768	780	786	790	795	805	823	853	903
24	24	26	29	35	44	59	80	100	175	290	414	469	493	505	515	530	555	601	683	823
25	25	26	28	33	40	51	66	86	113	165	217	252	274	289	303	324	361	428	548	760
26	26	27	29	32	37	45	56	69	86	100	129	149	161	170	182	206	253	332	473	724
29	29	30	31	33	37	42	49	58	69	80	92	100	100	100	119	145	192	279	432	705
35	35	35	36	38	40	43	48	54	60	67	74	81	86	92	100	105	163	251	412	696
45	45	45	46	47	48	50	53	56	60	65	69	74	79	86	94	100	155	241	404	692
60	60	60	61	61	62	63	65	67	69	72	75	79	83	89	97	100	158	245	407	693
84	84	84	84	84	85	85	86	87	89	90	93	96	100	100	100	129	175	264	421	700
122	122	122	122	122	122	123	123	124	125	127	129	132	136	143	153	174	220	303	451	714
213	213	213	213	213	213	213	213	214	214	215	216	217	220	226	238	261	303	376	507	741
388	388	388	388	388	388	388	388	388	388	388	389	389	391	395	403	419	450	507	609	789
685	685	685	685	685	685	685	685	685	685	685	685	685	686	688	692	699	713	741	789	871
_		_		_	-	-		-	_	-	_	-	_	-	-	_		-	-	

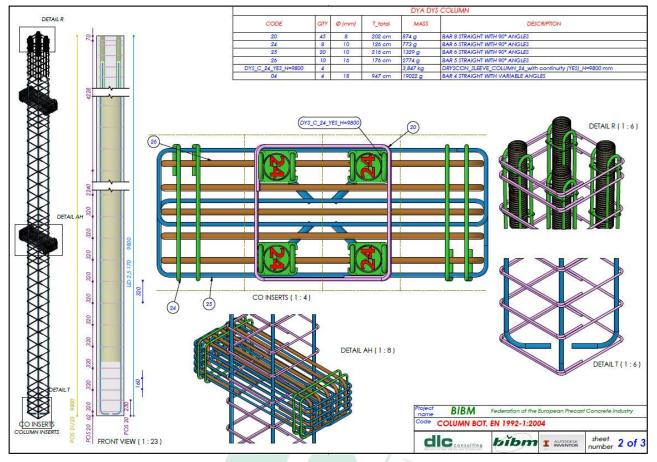


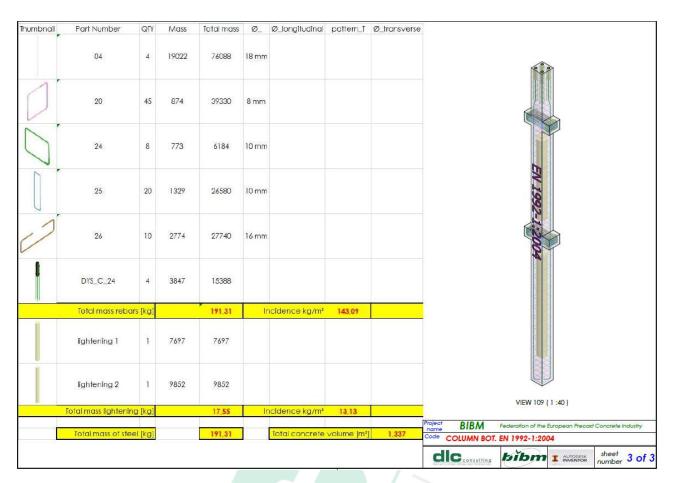

15 Column element – EN1992-1:2004

15.1 Shop drawings



Thumbnail	Part Number	QTY	Mass	Total Mass	Ø_									
	04	4	18929	75716	18 mm									
D	20	43	874	37582	8 mm							EN 1992-1:2		
0	24	8	773	6184	10 mm						ſ	F005:T-		
	25	20	1329	26580	10 mm									
0	26	10	2774	27740	16 mm						(
	Total mass rebar	[kg]		173,80	In	cidence kg/m³	138,82							
	lightening 1	1	7697	7697										
	lightening 2	1	7697	7697										
Toto	al mass lightening	[kg]		15,39	In	cidence kg/m³	12,30							
									Project	BIBM	Federation of the	e European Preca	st Concrete Inc	dustry
	otal mass of stee	[[ka]		173,80		Total concrete	volume [m³]	1,252	Code C		EN 1992-1:20			





bibm

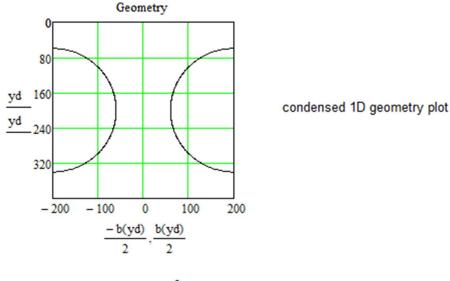
15.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

$$y_{tr} := (0 \ 400)^{T}$$


 $Htot := max(y_tr)$

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b_tr} &:= (400 \ 400)^T \\ \textbf{r_circ} &:= 140 \quad \text{radius of central void pipe} \\ \textbf{x_circ}(y) &:= 2 \sqrt{\textbf{r_circ}^2 - \left(y - \frac{\text{Htot}}{2}\right)^2} \\ \textbf{b_lin}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) \\ \textbf{b_circ}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) - \textbf{x_circ}(y) \\ \textbf{b}(y) &:= \text{if} \left[y \leq \left(\frac{\text{Htot}}{2} + \textbf{r_circ} \right) \land y \geq \frac{\text{Htot}}{2} - \textbf{r_circ}, \texttt{b_circ}(y), \texttt{b_lin}(y) \right] \end{split}$$

yd := 0.. Htot

 $u := 800.2 + Htot 2 = 2.4 \times 10^3$ exposed perimeter

Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (40 \ 200 \ 360)^T$ Area of reinforcement at each depth

 $\mathbf{As} \coloneqq (2 \cdot \mathbf{A}(18) \quad 0 \cdot \mathbf{A}(16) \quad 2 \cdot \mathbf{A}(18))^{\mathrm{T}}$

js = rows(As) js = 3

dsmax := max(ds) dsmax = 360

As_tot :=
$$\sum_{j=1}^{js} As_j = 1.018 \times 10^3$$

0 $\frac{\sigma c(\varepsilon)}{2} - 20$ σcc(ε) 0 - 40 - 60 - 4×10⁻³ - 2×10⁻³ 0 ε 500 σs(ε) 0 - 500 - 0.05 0 0.05 ε

15.3 Material constitutive laws employed in the calculation

15.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

Ac :=
$$\int_{0}^{\text{Htot}} b(y) \, dy$$
 Ac = 9.842×10^{4}
 $\rho_{\text{S}} := \frac{\text{As}_\text{tot}}{\text{Ac}} = 8.171 \times 10^{-3}$ geometric ratio for longitudinal mild

reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy \qquad \text{Syc} = 1.968 \times 10^{7}$$

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 200$

Second moment of the concrete area

Ixo_cls := $\int_{0}^{\text{Htot}} b(y) \cdot (y - yG)^2 dy \qquad \text{Ixo_cls} = 1.832 \times 10^9$

Idealisation coefficients (elastic)

 $ns := \frac{Es}{Ecm}$ ns = 4.734

Area of ideal cross-section

. . .

Aid := Ac + (ns - 1)
$$\cdot \sum_{j=1}^{js} As_j$$
 Aid = 1.014 × 10⁵

First moment of the reinforced concrete area

Sxid :=
$$Ac \cdot yG + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid} Yid = 200$$

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\left[\int_{0}^{\text{Htot}} b(y) \cdot (y - \text{Yid})^2 dy\right] - \sum_{j=1}^{js} \left[\text{As}_j \cdot (ds_j - \text{Yid})^2\right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$ns \cdot \sum_{j=1}^{js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

 $Ixo_id = 1.908 \times 10^9 \text{ mm}^4 \frac{Ixo}{Ixo}$

 $Sxid = 2.029 \times 10^7$

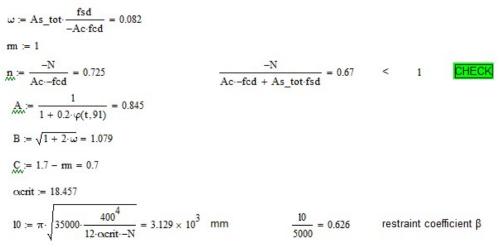
15.5 Time-dependent behaviour

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

 $h0 := 2 \cdot \frac{Ac}{n} = 82.02$ mm notional size of the member relative humidity RH := 50 % t0_T(t0) := t0 for cement class R $\alpha := 1$ $t0_mod(t0) := max \left[t0_T(t0) \cdot \left(\frac{9}{2 + t0_T(t0)}^{1.2} + 1 \right)^{\alpha}, 0.5 \right]$ $t0_mod(2) = 6.189$ $\alpha c1 := \left(\frac{35}{-fcm}\right)^{0.7} = 0.524$ $\alpha c2 := \left(\frac{35}{-fcm}\right)^{0.2} = 0.832$ $\alpha c3 := \left(\frac{35}{-fcm}\right)^{0.5} = 0.631$ $\beta h := if \left[-fcm > 35, min \left[1.5 \cdot \left[1 + (0.012 \cdot RH)^{18}\right] \cdot h0 + 250 \cdot \alpha c3, 1500 \cdot \alpha c3\right], min \left[1.5 \cdot \left[1 + (0.012 \cdot RH)^{18}\right] \cdot h0 + 250, 1500\right]\right] = 280.707 \cdot 10^{-10} $\beta t0(t0) := \frac{1}{0.1 + t0 \mod(t0)^{0.2}}$ $\beta c(t,t0) := \left(\frac{t - t0_mod(t0)}{\beta h + t - t0_mod(t0)}\right)^{0.3}$ $\beta fcm := \frac{16.8}{\sqrt{-fcm}} = 1.791$ $\varphi RH := if \left[-fcm > 35, \left(1 + \frac{1 - \frac{RH}{100}}{0.1 \cdot \sqrt[3]{h0}} \cdot \alpha c1 \right) \cdot \alpha c2, 1 + \frac{1 - \frac{RH}{100}}{0.1 \cdot \sqrt[3]{h0}} \right] = 1.334$ $\varphi 0(t0) := \varphi RH \cdot \beta fcm \cdot \beta t0(t0)$ $\varphi(t,t0) := \varphi 0(t0) \cdot \beta c(t,t0)$ t := 50.365 days $\varphi(t, 91) = 0.92$ $\varphi(t,2) = 1.544$ φ(days, 2) (days, 23) (days, 91)1 5×10³ 1×10⁴ 1.5×10⁴ 0 days

15.6 Non-linear moment-curvature diagram

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)


$$\underbrace{\mathbb{N}}_{i}(\varepsilon_\mathtt{sup},\theta) \coloneqq \sum_{i=1}^{Htot} \left(\sigma c \Big(\varepsilon \Big(y_i, \varepsilon_\mathtt{sup}, \theta \Big) \Big) \cdot b \Big(y_i \Big) \cdot \Delta y \Big) + \sum_{j=1}^{js} \left(\sigma s \Big(\varepsilon \Big(\mathtt{ds}_j, \varepsilon_\mathtt{sup}, \theta \Big) \Big) \cdot \mathtt{As}_j \Big) \right)$$

$$\mathbf{M}(\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta}) \coloneqq \sum_{i\,=\,1}^{Htot} \left[\boldsymbol{\sigma} \mathtt{c} \Big(\boldsymbol{\varepsilon} \big(\mathtt{y}_i, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \big) \Big) \cdot \mathtt{b} \big(\mathtt{y}_i \big) \cdot \boldsymbol{\Delta} \mathtt{y} \cdot \big(\mathtt{y}_i - \mathtt{yG} \big) \right] + \sum_{j\,=\,1}^{js} \left[\boldsymbol{\sigma} \mathtt{s} \Big(\boldsymbol{\varepsilon} \big(\mathtt{ds}_j, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \big) \Big) \cdot \mathbf{As}_j \cdot \big(\mathtt{ds}_j - \mathtt{yG} \big) \right]$$

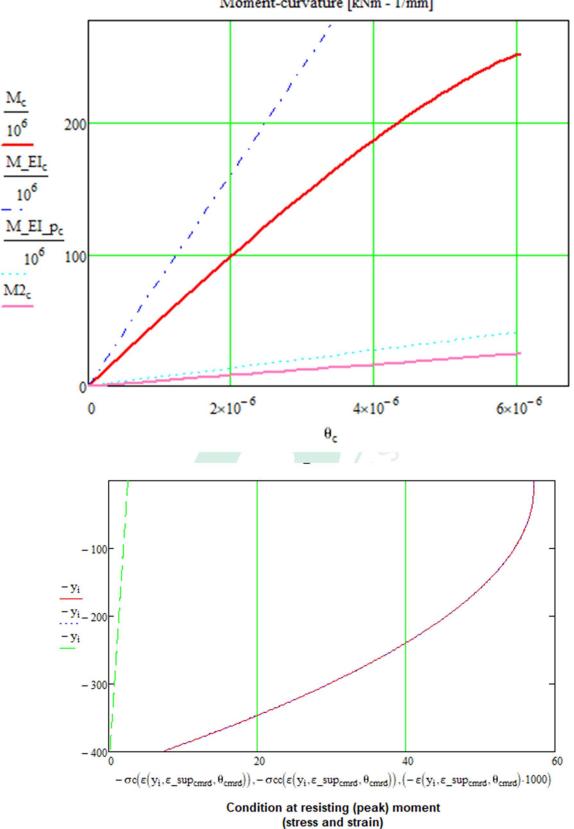
Design external axial load

NS := -4078000 N

MODEL COLUMN FOR 2nd ORDER EFFECTS (§5.8.8)

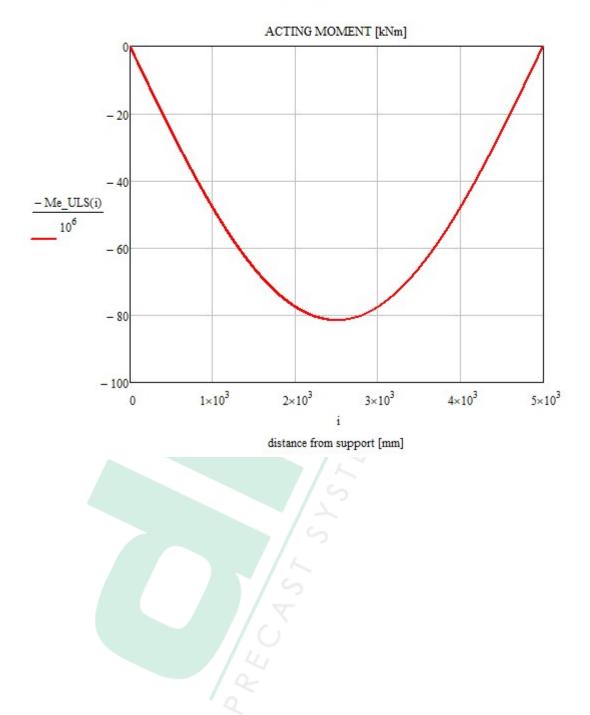
from FEM model -> linear buckling analysis

$$\lambda \lim := 20 \cdot A \cdot B \cdot \frac{C}{\sqrt{n}} = 14.985 \qquad \qquad \lambda_{w} := \frac{10}{\sqrt{\frac{1 \times c_{w} \cdot cl_{w}}{Ac}}} = 22.937$$


$$M2_{c} := -N \cdot \theta_{c} \cdot \frac{\left(\frac{10}{1000}\right)^{2}}{\pi^{2}}$$

if not 2nd order effects need to be taken into account

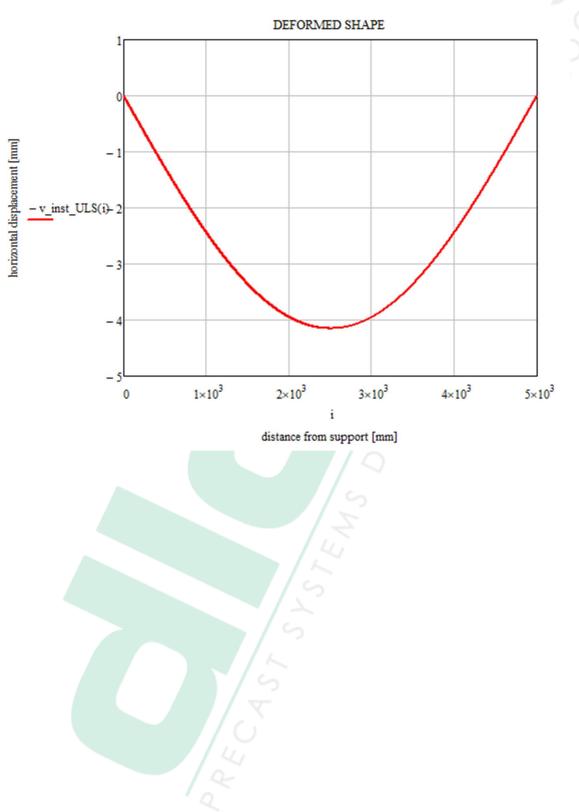
Moment-curvature [kNm - 1/mm]


15.7 Bending moment distribution (induced by eccentricity)

Me_ULS(x) := $-N \cdot 20 \cdot \sin\left(\frac{\pi}{L} \cdot x\right)$

bending moment induced by geometrical imperfections

i := 0..L



15.8 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:

SLS STRESS CONTROL (§7.2)

$$\begin{array}{l} k1 \coloneqq 0.6 \\ k2 \coloneqq 0.45 \\ k3 \coloneqq 0.8 \\ k4 \coloneqq 1 \\ k5 \coloneqq 0.75 \\ Nr \coloneqq -2826000 \quad N \\ Nqp \coloneqq -2266000 \quad N \\ \sigmac_r_bot(x) \coloneqq \frac{Nr}{Aid} + \frac{Me_ULS(x) \cdot \frac{Nr}{N} \cdot (Htot - Yid)}{Ixo_id} \end{array}$$

elastic stress of bottom concrete chord for rare load combination

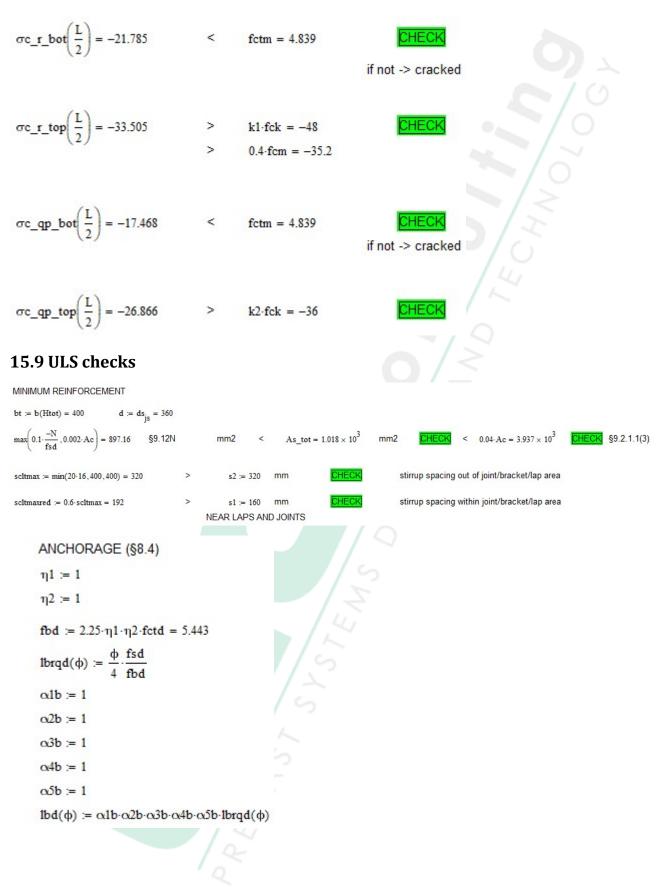
$$\sigma c_r_top(x) \coloneqq \frac{Nr}{Aid} + \frac{Me_ULS(x) \cdot \frac{Nr}{N} \cdot (-Yid)}{Ixo_id}$$

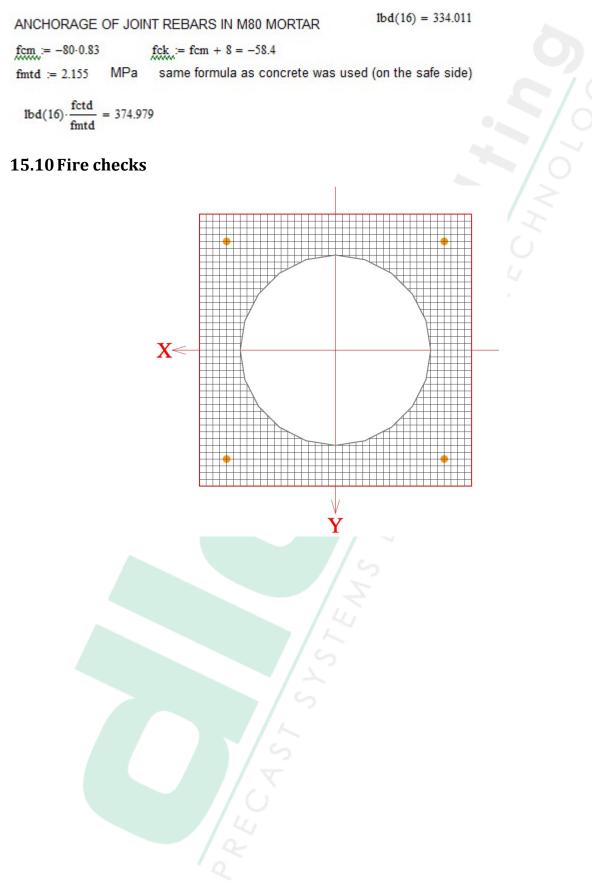
elastic stress of top concrete chord for rare load combination

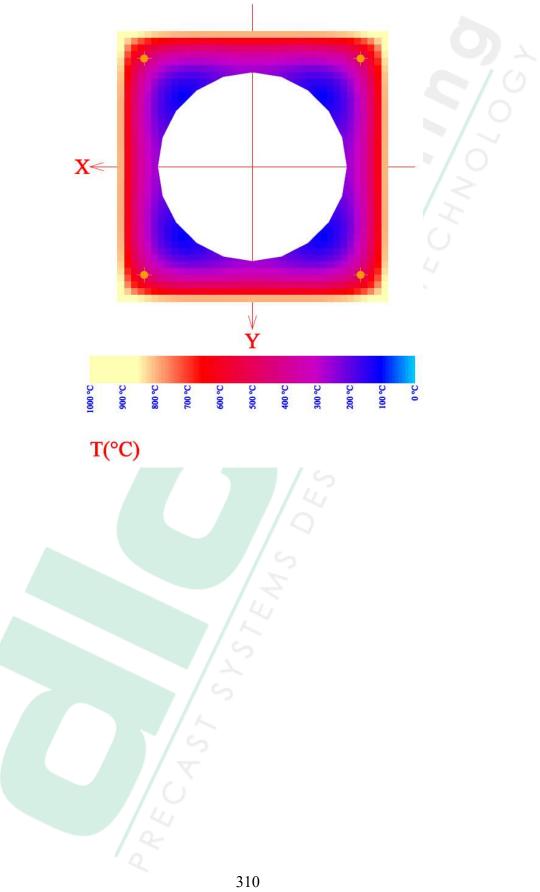
$$\sigma c_qp_bot(x) := \frac{Nqp}{Aid} + \frac{Me_ULS(x) \cdot \frac{Nqp}{N} \cdot (Htot - Yid)}{Ixo_id}$$

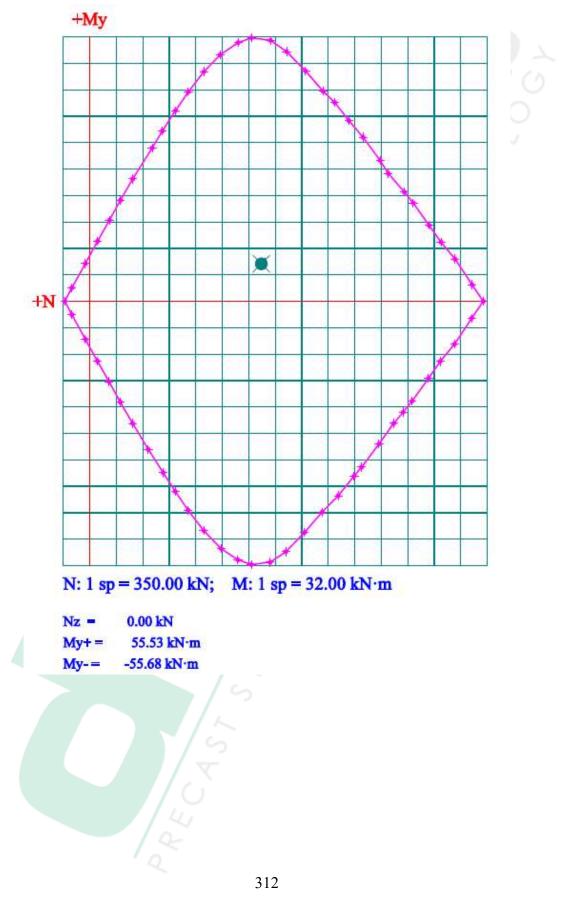
elastic stress of bottom concrete chord for quasi permanent load combination

$$\sigma c_qp_top(x) := \frac{Nqp}{Aid} + \frac{Me_ULS(x) \cdot \frac{Nqp}{N} \cdot (-Yid)}{Ixo_id}$$

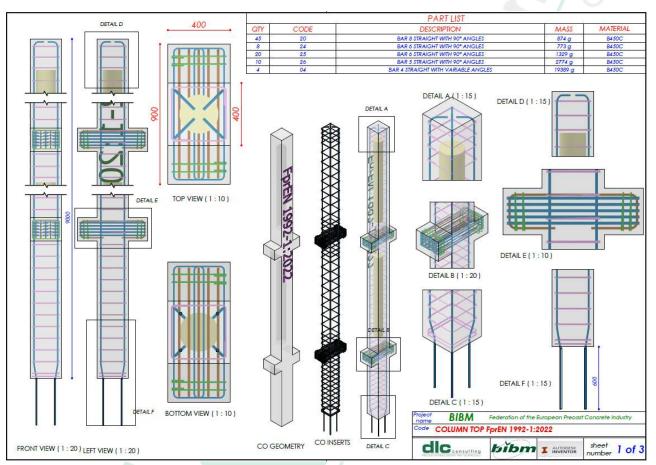

elastic stress of top concrete chord for quasi permanent load combination



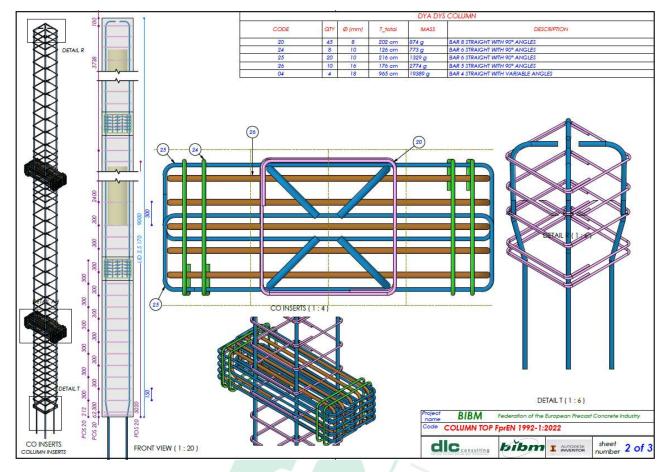


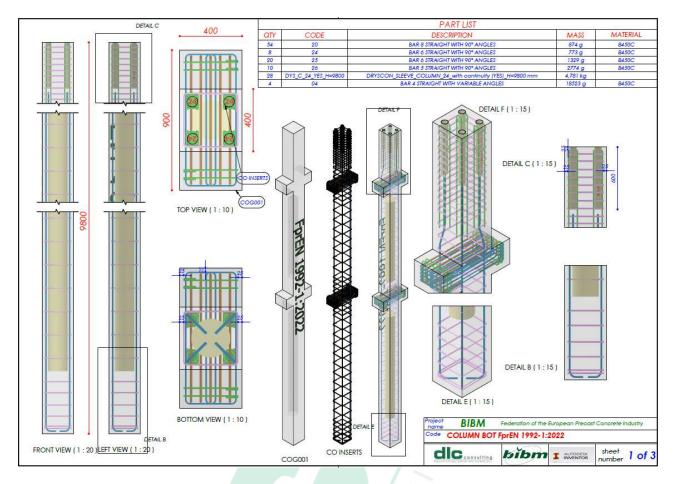


1												1	13							
													179	195	229	282	357	460	601	789
													19	206	237	287	360	462	602	790
													-	221	245	292	363	464	603	790
														230	253	298	367	467	604	791
														24	6260	303	371	469	606	791
														25	265	307	373	470	607	792
	~													2	268	309	374	471	607	792
1	10													2	268	309	374	471	607	792
														T	265		373	470	607	792
														24	6260	303	371	469	606	791
														230	253	298	367	466	604	791
														221		292	363	464	603	790
													2	206	100.0020	1.1		462	602	790
													-	-		282	-	460	601	789
												17	178 3 7163	185	223	278	-	459	600	789
														179	dowed.		355	460	601	790
												137	147		221		358		603	791
											8 ¹¹⁵	125		183	-	286	Continuity of	468	607	793
									1	114				1.00			-		and the second second	
							1	3157	137	125		140	-		240	-	-		613	795
					2	1196		163		146	1000	164	-			315	1.1.1.1	489	623	800
	259	253	246	235	221	206	24.6					196				339			636	806
	268	265	260	253	245	236		223		221		239	-			374		533	654	814
+	308	306	303	112		286		-		280	-	297	-		0.010.8			567	679	826
	374		370	367		360					364			411	442	483		613	712	841
	471	470	469	466	464	462	460	459	460	463	-	476	-	507	533	567	613	675	756	861
	607	606	605	604	603	602	601	600	601	603	607	613	623	636	654	679	712	756	813	886
	792	792	791	791	790	790	789	789	790	791	793	795	800	806	814	826	841	861	886	918

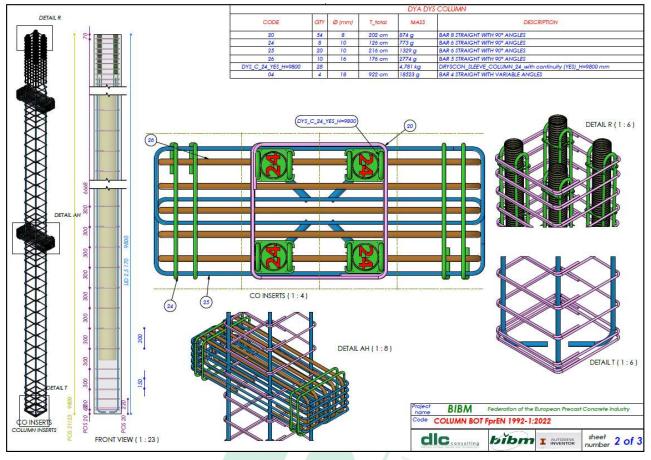


16 Column element – FprEN1992-1:2022


16.1 Shop drawings



humbnail	Part Number	QTY	Mass	Total Mass	Ø_								
	04	4	19389	77556	18 mm								
0	20	45	874	39330	8 mm						FprEA		
0	24	8	773	6184	10 mm						DIEN 1992-1		
	25	20	1329	26580	10 mm						2022		
12	26	10	2774	27740	16 mm						and the second		
1	lotal mass rebars	[kg]		177,39	In	cidence kg/mº	135,21					P	
	lightening 1	1	6136	6136									
	lightening 2	1	6234	6234									
Toto	al mass lightening	[kg]		12,37	In	cidence kg/m³	9,43				VIEW 107 (1:4	Ю)	
Te	otal mass of stee	[ka]	_	177,39		Total concrete	volume [m³]	1,312	(Project)				
									Project name Code CC	BIBM DUMN TOP	Federation of the FprEN 1992-1:		t Concrete Industry
									-	Consulting	bibm		sheet 3 of



Thumbnall	Part Number	QΙΥ	Mass	Mass Total	Ø_								
	04	4	18523	74092	18 mm								
D	20	54	874	47196	8 mm								
0	24	8	773	6184	10 mm								
	25	20	1329	26580	10 mm						ForEN 1992		
0	26	10	2774	27740	16 mm						992-1:2		
ŧ	DYS_C_24	4	4781	19124							022		
15	Total mass reban	[kg]		200,92	lr	icidence kg/m³	142,70				A V		
	lightening 1	1	6136	6136									
	lightening 2	1	7854	7854									
- 1	Total mass lightening	ı [kg]		13,99	Ir	icidence kg/m³	9,94						
-	Total mass of stee	l [kg]		200,92		Total concrete	volume [m²]	1,408		BIBM LUMN BOT	Federation of the	st Concrete Industry	1
									dlc	consulting	bibm	sheet 3 0	f 3

bibm

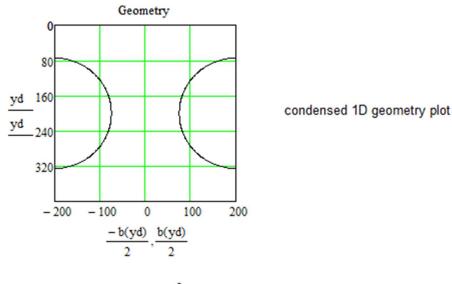
16.2 Definition of concrete and reinforcement geometry

GEOMETRY

Concrete

Depth from upper chord

$$y_{tr} := (0 \ 400)^{T}$$


 $Htot := max(y_tr)$

hcopr := 30 net cover of longitudinal rebars

Width of corresponding chord:

$$\begin{split} \textbf{b_tr} &:= (400 \ 400)^T \\ \textbf{r_circ} &:= 125 \quad \text{radius of central void pipe} \\ \textbf{x_circ}(y) &:= 2 \sqrt{\textbf{r_circ}^2 - \left(y - \frac{\text{Htot}}{2}\right)^2} \\ \textbf{b_lin}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) \\ \textbf{b_circ}(y) &:= \text{linterp}(y_\text{tr}, \texttt{b_tr}, y) - \textbf{x_circ}(y) \\ \textbf{b}(y) &:= \text{if} \left[y \leq \left(\frac{\text{Htot}}{2} + \textbf{r_circ} \right) \land y \geq \frac{\text{Htot}}{2} - \textbf{r_circ}, \texttt{b_circ}(y), \texttt{b_lin}(y) \right] \end{split}$$

yd := 0.. Htot

 $u := 800.2 + Htot 2 = 2.4 \times 10^3$ exposed perimeter

ECHNOLOGY

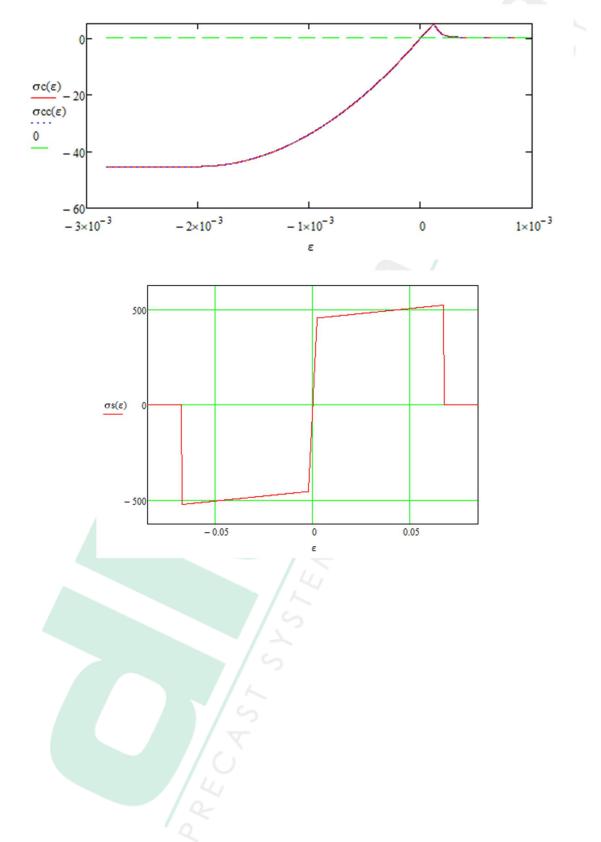
Longitudinal mild reinforcement

Area of single rebar:

$$A(\phi) := \frac{\phi^2 \cdot \pi}{4}$$

Distance of rebars from upper chord $ds := (40 \ 200 \ 360)^T$ Area of reinforcement at each depth

 $\mathbf{As} \coloneqq (2 \cdot \mathbf{A}(18) \quad 0 \cdot \mathbf{A}(16) \quad 2 \cdot \mathbf{A}(18))^{\mathrm{T}}$


js := rows(As) js = 3

dsmax := max(ds) dsmax = 360

As_tot :=
$$\sum_{j=1}^{js} As_j = 1.018 \times 10^3$$

16.3 Material constitutive laws employed in the calculation

16.4 Sectional properties

PROPERTIES OF THE CROSS-SECTION

Assumption of uncracked cross-section

Area of concrete neglecting reinforcement

$$Ac := \int_{0}^{\text{Htot}} b(y) \, dy \qquad Ac = 1.109 \times 10^{5}$$

 $\rho s := \frac{As_tot}{Ac} = 9.177 \times 10^{-3}$

geometric ratio for longitudinal mild reinforcement

First moment of the concrete area

Syc :=
$$\int_{0}^{\text{Htot}} b(y) \cdot y \, dy \qquad \text{Syc} = 2.218 \times 10^{7}$$

Centre of mass of the concrete area

$$yG := \frac{Syc}{Ac}$$
 $yG = 200$

Second moment of the concrete area

Ixo_cls := $\int_{0}^{Htot} b(y) \cdot (y - yG)^{2} dy \qquad Ixo_cls = 1.942 \times 10^{9}$

Idealisation coefficients (elastic)

 $ns := \frac{Es}{Ecm} \qquad ns = 4.733$

Area of ideal cross-section

Aid := Ac + (ns - 1)
$$\cdot \sum_{j=1}^{js} As_j$$
 Aid = 1.147 × 10⁵

First moment of the reinforced concrete area

Sxid :=
$$Ac \cdot yG + (ns - 1) \cdot \sum_{j=1}^{js} (As_j \cdot ds_j)$$

Sxid = 2.294×10^7

Centre of mass of the reinforced concrete area

$$Yid := \frac{Sxid}{Aid}$$
 $Yid = 200$

Second moment of the concrete area subtracting the effect of reinforcement

Ixoidcls :=
$$\int_{0}^{Htot} b(y) \cdot (y - Yid)^{2} dy - \sum_{j=1}^{js} \left[As_{j} \cdot (ds_{j} - Yid)^{2} \right]$$

Second moment of the mild reinforcement area

Ixoidlenta :=
$$\mathbf{ns} \cdot \sum_{j=1}^{js} \left[As_j \cdot (ds_j - Yid)^2 \right]$$

Second moment of the idealised reinforced concrete area

$$Ixo_id = 2.039 \times 10^9 \text{ mm}^4 \frac{Ixo_id}{Ixo_is} = 1.05$$

16.5 Time-dependent behaviour

DETAILED EVALUATION OF CREEP COEFFICIENT (ANNEX B)

$$\begin{aligned} &\ln = 2, \frac{Ac}{u} = 92.427 \\ RH &= 50 \\ t0_adj(t0) &= t0 \\ (3bc_fcm) &= \frac{1.8}{(-fcm)^{0.7}} = 0.073 \\ (3bc_t_t0(t,t0) &= \ln\left[\left(\frac{30}{t0_adj(t0)} + 0.055\right)^2 \cdot (t-t0) + 1\right] \\ (3dc_fcm) &= \frac{412}{(-fcm)^{1.4}} = 0.781 \\ (-fcm)^{1.4} &= 0.781 \\ ($$

5×10³ 1×10⁴ 1.5×10⁴

days

0

16.6 Non-linear moment-curvature diagram

Equilibrium equations (rotation with respect to the centre of mass of the concrete section)

$$\underbrace{\mathbb{N}}_{i}(\varepsilon_\mathtt{sup},\theta) \coloneqq \sum_{i=1}^{Htot} \left(\sigma c \Big(\varepsilon \Big(\mathtt{y}_{i},\varepsilon_\mathtt{sup},\theta \Big) \Big) \cdot b \Big(\mathtt{y}_{i} \Big) \cdot \Delta \mathtt{y} \Big) + \sum_{j=1}^{js} \left(\sigma s \Big(\varepsilon \Big(\mathtt{ds}_{j},\varepsilon_\mathtt{sup},\theta \Big) \Big) \cdot \mathtt{As}_{j} \Big) \right)$$

$$\mathbf{M}(\boldsymbol{\varepsilon}_\mathtt{sup},\boldsymbol{\theta}) \coloneqq \sum_{i\,=\,1}^{Htot} \left[\boldsymbol{\sigma} \mathtt{c} \Big(\boldsymbol{\varepsilon} \big(\mathtt{y}_i, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \big) \Big) \cdot \mathtt{b} \big(\mathtt{y}_i \big) \cdot \boldsymbol{\Delta} \mathtt{y} \cdot \big(\mathtt{y}_i - \mathtt{yG} \big) \right] + \sum_{j\,=\,1}^{js} \left[\boldsymbol{\sigma} \mathtt{s} \Big(\boldsymbol{\varepsilon} \big(\mathtt{ds}_j, \boldsymbol{\varepsilon}_\mathtt{sup}, \boldsymbol{\theta} \big) \Big) \cdot \mathbf{As}_j \cdot \big(\mathtt{ds}_j - \mathtt{yG} \big) \right]$$

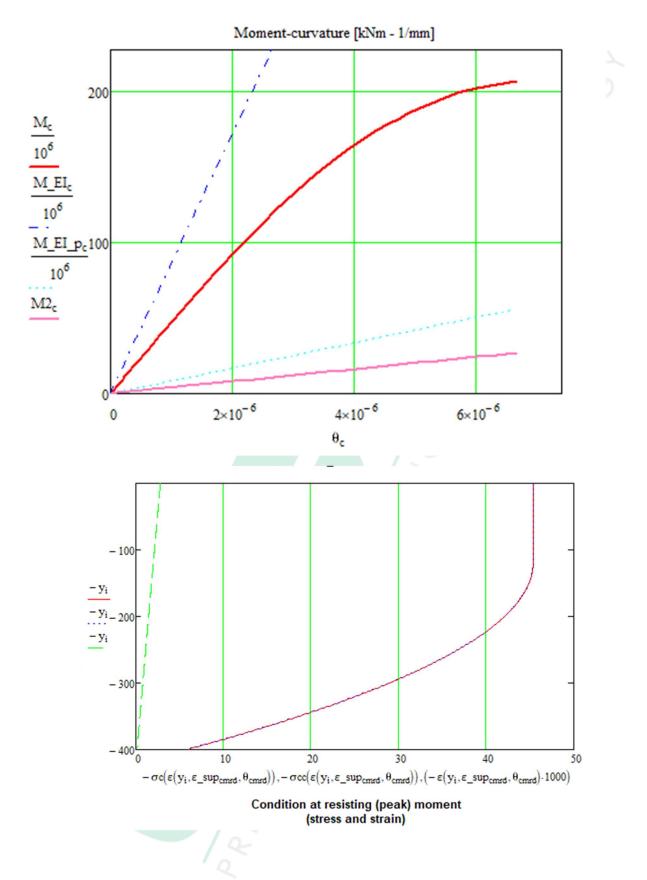
Design external axial load

NS := -4078000

MODEL COLUMN FOR 2nd ORDER EFFECTS (§7.4.3.2)

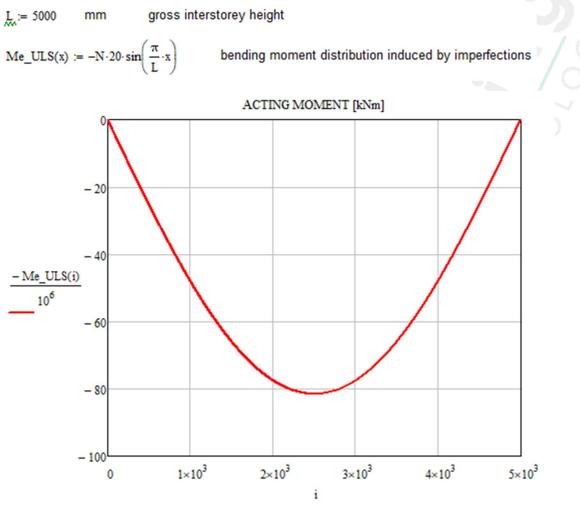
$$\begin{split} & \omega \coloneqq As_tot \cdot \frac{fsd}{-Ac \cdot fcd} = 0.092 \\ & m \coloneqq 1 \\ & n \coloneqq \frac{-N}{Ac \cdot -fcd} = 0.811 \\ & \frac{-N}{Ac \cdot -fcd} = 0.742 \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & Ac \cdot -fcd + As_tot \cdot fsd \\ & B \coloneqq \sqrt{1 + 2 \cdot \omega} = 1.088 \\ & C_{c} \coloneqq 1.7 - rm = 0.7 \\ & ccrit \coloneqq 18.457 \\ & 10 \coloneqq \pi \cdot \sqrt{35000 \cdot \frac{400^4}{12 \cdot ccrit - N}} = 3.129 \times 10^3 \text{ mm} \qquad \frac{10}{5000} = 0.626 \text{ restraint coefficient } \beta \end{split}$$

from FEM model -> linear buckling analysis

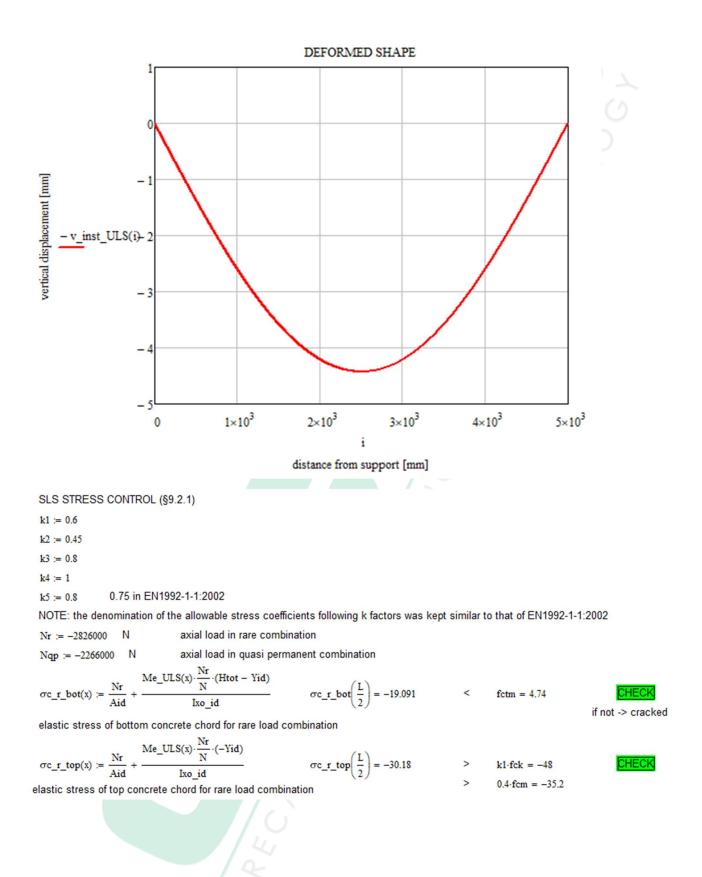

$$\lambda \lim := 20 \cdot A \cdot B \cdot \frac{C}{\sqrt{n}} = 14.229 \qquad \qquad \lambda := \frac{10}{\sqrt{\frac{1 \times 0 - c I s}{A c}}} = 23.649$$
$$M_{2c}^{2} := -N \cdot \theta_{c} \cdot \frac{\left(\frac{10}{1000}\right)^{2}}{\pi^{2}}$$

CHECK

if not 2nd order effects need to be taken into account

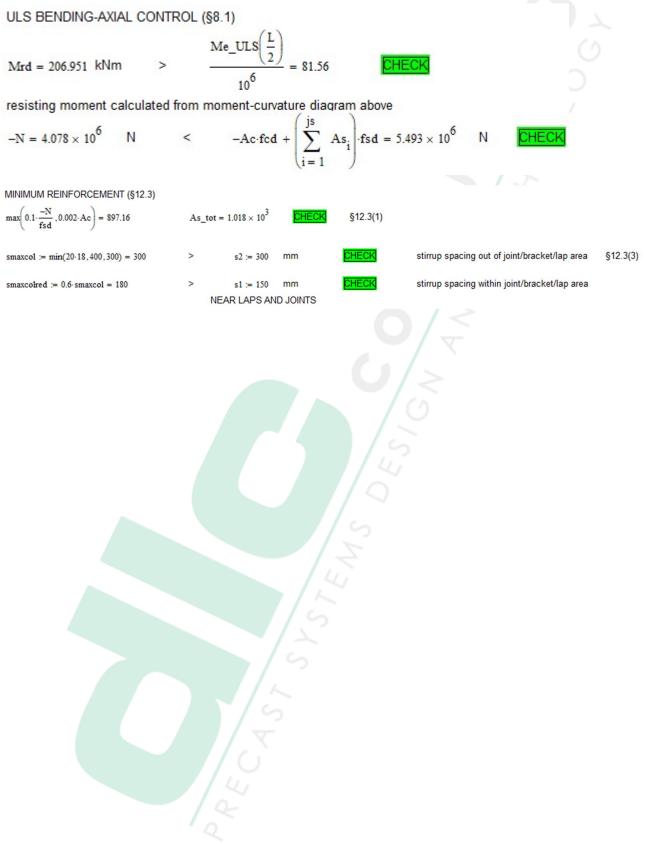


16.7 Bending moment distribution induced by eccentricity


distance from support [mm]

16.8 SLS checks

NON-LINEAR DEFLECTION PROFILE FOR SIMPLY SUPPORTED BEAM:



16.9 ULS checks

ANCHORAGE (§11.4)

klb := 50 kcp := 1 for good bond conditions $n\sigma := \frac{3}{2}$ cs := 50 cx := 75 cy := 40 $cd(\phi) := min(0.5 \cdot cs, cx, cy, 3.75 \cdot \phi)$ cd(12) = 25

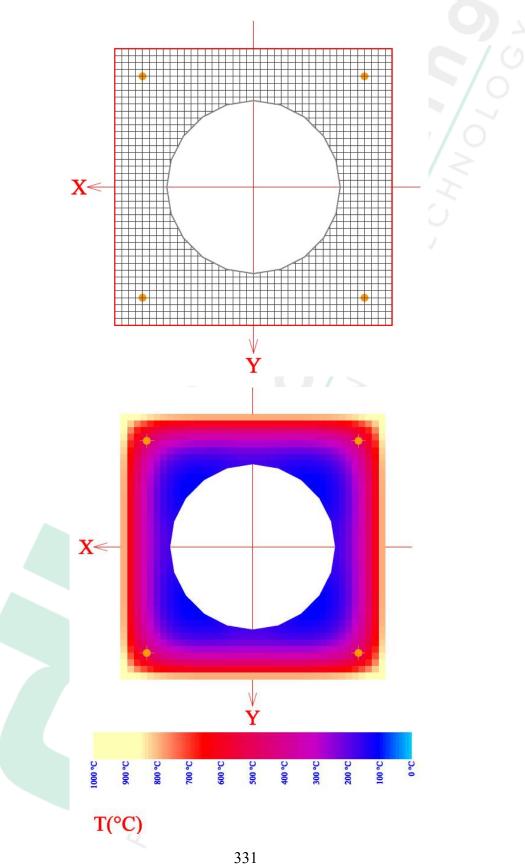
$$1bd(\phi) := max \left[klb \cdot kcp \cdot \phi \cdot \left(\frac{fsd}{435}\right)^{n\sigma} \cdot \left(\frac{25}{-fck}\right)^{\frac{1}{2}} \cdot \left(\frac{\phi}{20}\right)^{\frac{1}{3}} \cdot \left(\frac{1.5 \cdot \phi}{cd(\phi)}\right)^{\frac{1}{2}}, 10 \cdot \phi \right]$$

1bd(18) = 539.211

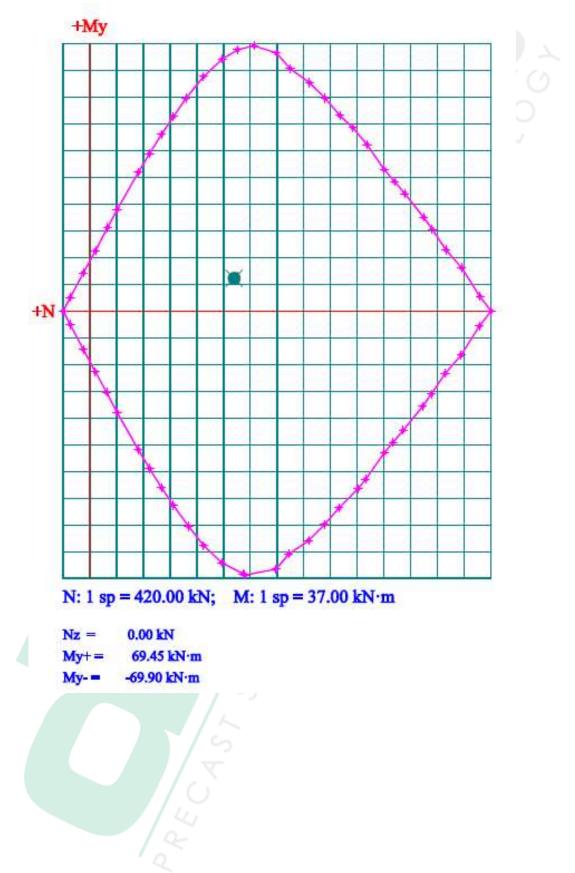
ANCHORAGE OF JOINT REBARS IN M80 MORTAR

 $1bd(30) \cdot \frac{fctd}{fmtd} = 1.516 \times 10^3$

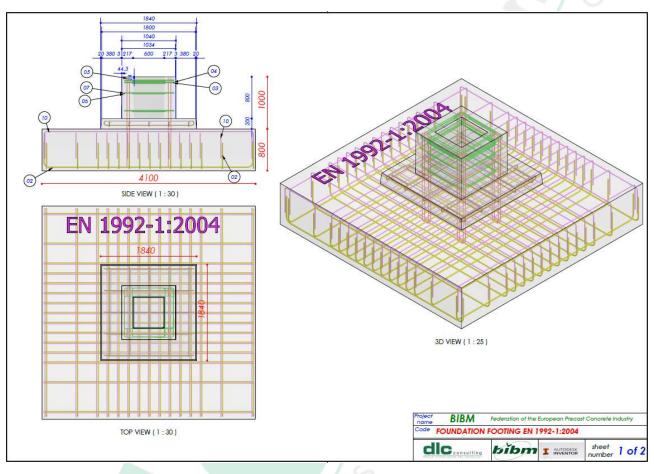
length of straight part for 90° bent bars


 $1b90(\phi) := max(70, 1bd(\phi) - 15 \cdot \phi, 10 \cdot \phi)$

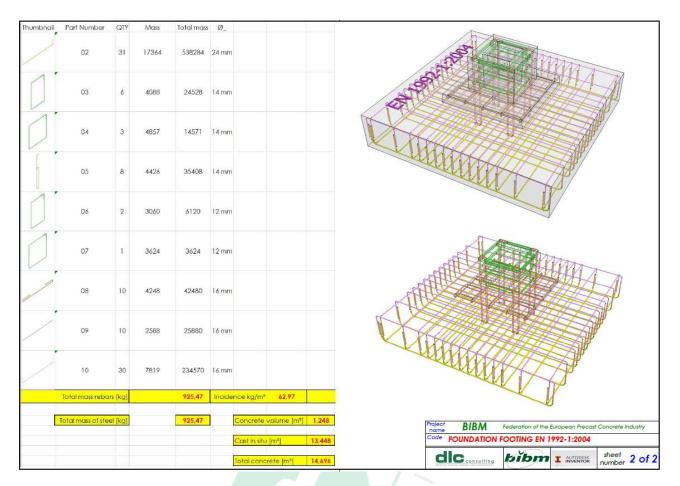
16.10 Fire checks



									3	100	100	1	130	104	209	200	340	4 JJ	371	100
										10	0100	117	135	162	206	265	345	452	595	787
											Į1.	121	137	163	205	264	344	451	594	786
											1)	130	142	166	207	264	344	450	594	786
												14	1148	170	209	266	344	450	594	786
												1	156	176	212	268	345	451	594	786
													163	181	215	269	346	451	594	786
													169	184	218	271	347	452	595	786
11													173	186	219	272	347	452	595	786
1:	00												173	186	219	272	347	452	595	786
													169	184	218	271	347	452	595	786
													163	181	215	269	346	451	594	786
												1	156	176	212	268	345	451	594	786
												14	148	170	209	266	344	450	594	786
											14	130	142	166	206	264	344	450	594	786
											h	121	137	163	205	264	344	451	594	786
										10	100	117	135	162	206	265	345	452	595	787
									10	100	100	117	136	164	209	268	348	455	597	788
								10	100		100	121	141	170	215	274	353	459	600	789
						10	5114	1.00	100		115	130	150	180	224	283	361	465	605	791
					141	100	121		117	121	130	143	164	195	238	296	372	475	612	794
173	173	169	163	156	148	142	137	135	136	141	150	164	186	217	258	314	388	488	621	799
186		184	180	176	170	165	163	162	164	170	180	195	217	246	286	339	411	507	635	805
219	219	218	215	212	209	206	205	206	209	215	224	238	258	286	323	374	441	532	654	814
271	271	271	269	267	266	264	264	265	268	274	283	296	314	339	374	420	483	567	679	825
347	347	347	346	345	344	344	344	345	348	353	361	372	388	411	441	483	539	613	712	841
100	452	452	451	451	450	450	451	452	455	459	465	475	488	507	532	567	613	675	756	860
432		-			-	111.55		-					100	COR	CEA	670	710	756	010	000
595	595	594	594	594	594	594	594	595	597	600	605	612	621	032	034	0/9	112	120	812	885



17 Foundation footing element - EN1992-1:2004


17.1 Shop drawings

17.2 Definition of concrete geometry and material properties

fck := -25 MPa	characteristic compressive strength of cast-in-situ concrete
γ cpcred := 1.4	partial safety coefficient for concrete
$fcd := \frac{fck}{\gamma cpcred} = -17.857$	MPa design compressive strength of cast-in-situ concrete
$\nu := 0.6 \cdot \left(1 + \frac{\text{fck}}{250}\right) = 0.54$	§6.10
fsk := 500 MPa	characteristic yield strength of mild steel
γ sred := 1.1	partial safety coefficient for mild steel
NEd := 4100000 N	Ultimate Limit State (ULS) axial load from column
L:= 4100 mm	side of base square footing
Lpocket := 1040 mm	side of precast pocket

17.3 Soil bearing stress check

SOIL BEARING STRESS (Winkler soil model with rigid foundation)

 $\frac{\text{NEd}}{r^2} = 0.244$ MPa CHECK

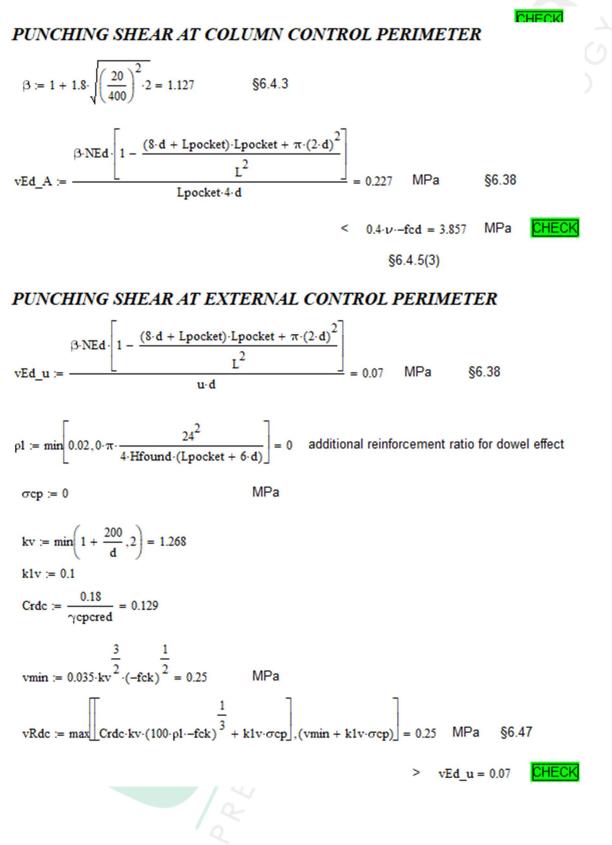
assumed maximum bearing stress of soil

shape of critical perimeter for punching shear (§6.4)

>

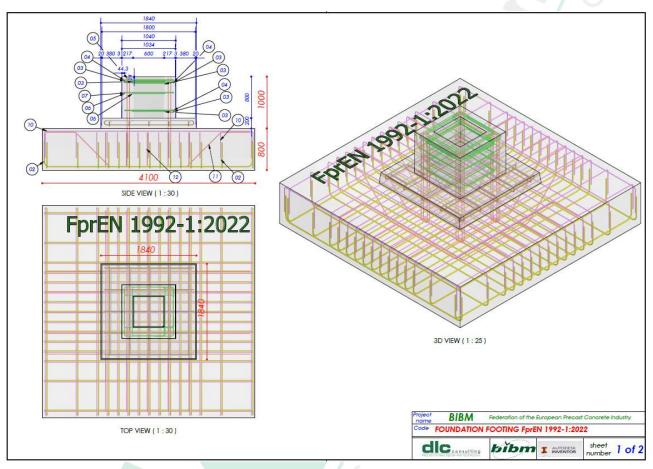
Hbase := 200 mm Hfound := 800 mm d := Hfound - 55 = 745 mm u := Lpocket $\cdot 4 + 2 \cdot d \cdot 2 \cdot \pi = 1.352 \times 10^4$ mm critical perimeter below pocket $4 \cdot d + 1040 = 4.02 \times 10^3$ mm < L = 4.1×10^3 mm $4 \cdot d + \sqrt{2} \cdot 1040 = 4.451 \times 10^3$ mm < L $\cdot \sqrt{2} = 5.798 \times 10^3$ mm

critical perimeter is inscribed into foundation base CHECK


17.4 Flexural reinforcement design

$$M := \sigma g \cdot L \cdot \frac{\left[\frac{(L - Lpocket)}{2}\right]^2}{2} = 1.2 \times 10^9 \quad \text{Nmm} < 12 \cdot \pi \cdot \frac{24^2}{4} \cdot 0.9 \cdot (d - \text{Hbase}) \cdot \frac{\text{fsk}}{\gamma \text{sred}} = 1.21 \times 10^9 \text{Nmm}$$

17.5 Punching shear



18 Foundation footing element – FprEN1992-1:2022

18.1 Shop drawings

Thumbnail_P	art Number	QIY	Mass	Total mass	Ø_	
	02	30	17364	520920	24 mm	SALE TO A LONG
D	03	6	4088	24528	14 mm	4000
D	04	3	4857	14571	14 mm	
1	Q5	8	4426	35408	14 mm	
	06	2	3060	6120	12 mm	
0	07	1	3624	3624	12 mm	
/	08	10	4248	42480	16 mm	
4	09	10	2588	25880	16 mm	
/	10	30	7819	234570	16 mm	
~	-11	5	7048	35240	16 mm	
~	12	5	6922	34610	16 mm	
	Total mas	s rebars [kg]		977,95	Incidence kg/m ^a 66,55	
	Total mass	of steel [kg]		977,95	Concrete volume [m³] 1,248	Project BIBM Federation of the European Precast Concrete Industri name Code FOUNDATION FOOTING FprEN 1992-1:2022
					Cast in situ [m ⁹] 13,448	3
					Total concrete [m²] 14,690	dic censuiting tibm I Autopress sheet 2 co

18.2 Definition of concrete geometry and material properties

fck := -25 MPa characteristic compressive strength of cast-in-situ concrete	
γc := 1.5 partial safety coefficient for concrete	
fcd := $\frac{fck}{\gamma c}$ = -16.667 MPa design compressive strength of cast-in-situ concrete	
$\gamma v := 1.3$ partial safety coefficient for concrete in shear	
ddg := 32 mm	
$\nu := 0.6 \cdot \left(1 + \frac{\text{fck}}{250} \right) = 0.54$	
fsk := 500 MPa characteristic yield strength of mild steel	
γsred := 1.1 partial safety coefficient for mild steel	
$fywd := \frac{fsk}{\gamma sred} = 454.545$ MPa design yield strength of mild steel web reinforcement	t
NEd := 4100000 N Ultimate Limit State (ULS) axial load from column	
L = 4100 mm side of base square footing	
Lpocket := 1040 mm side of precast pocket	

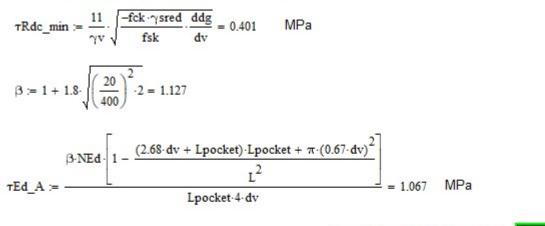
18.3 Soil bearing stress check

SOIL BEARING STRESS (Winkler soil model with rigid foundation)

σg := 0.25	MPa	>		$\frac{d}{dt} = 0.244$	MPa	CHECK
as	sumed n	naximum I	bearing	stress of	soil	
s	hape of	critical per	imeter f	or punchi	ng shear (§8.4)	
Hbase := 20	00	mm				
Hfound :=	800	mm				
dv := Hfou	nd – 55 -	= 745	mm	i		
b05 := Lpo	cket-4 +	$0.5 \cdot \mathbf{dv} \cdot 2 \cdot \pi$	= 6.5 ×	10 ³ m	Im	
1∙dv + 1040) = 1.785	× 10 ³	mm	<	$L = 4.1 \times 10^3$	mm
$1 \cdot dv + \sqrt{2} \cdot dv$	1040 = 2.	216×10^3	mm	<	$L \cdot \sqrt{2} = 5.798 \times 10^{3}$	mm
				critical p	erimeter is inscribed	into foundation base CHECK

18.4 Flexural reinforcement design

FLEXURAL REINFORCEMENT



18.5 Punching shear

GLOBAL MECHANISM

PUNCHING SHEAR VERIFICATION NEED

< TRdc_min = 0.401 MPa CHECK

if not -> calculation needed

PUNCHING SHEAR AT EXTERNAL CONTROL PERIMETER

$$\tau Ed_u := \frac{\beta \cdot NEd \cdot \left[1 - \frac{(2.68 \cdot dv + Lpocket) \cdot Lpocket + \pi \cdot (0.67 \cdot dv)^2}{L^2}\right]}{b05 \cdot dv} = 0.67 \quad MPa$$

b0 := $4 \cdot \text{Lpocket} = 4.16 \times 10^3$ mm

$$kpb := if\left(3.6 \cdot \sqrt{1 - \frac{b0}{b05}} < 1, 1, if\left(3.6 \cdot \sqrt{1 - \frac{b0}{b05}} > 2.5, 2.5, 3.6 \cdot \sqrt{1 - \frac{b0}{b05}}\right)\right) = 2.196$$

$$\rho 1 := min\left[0.02, 12 \cdot \pi \cdot \frac{24^2}{4 \cdot Hfound \cdot (Lpocket + 6 \cdot dv)}\right] = 1.124 \times 10^{-3}$$

$$\tau Rdc := \min\left[\frac{0.6}{\gamma v} \cdot kpb \cdot \left(100 \cdot \rho 1 \cdot -fck \cdot \frac{ddg}{dv}\right)^{\frac{1}{3}}, \frac{0.5}{\gamma v} \cdot \sqrt{-fck}\right] = 0.492$$
 MPa

> $\tau Ed u = 0.67$ CHECK

 $\frac{0.5}{\gamma v} \cdot \sqrt{-fck} = 1.923$ if not -> punching shear reinforcement is needed

PUNCHING SHEAR REINFORCEMENT CALCULATION

$$\begin{split} \varphi w &:= 16 \quad \text{mm} \\ n\varphi w &:= 5 \\ Asw &:= n\varphi w \cdot \pi \cdot \frac{\varphi w^2}{4} = 1.005 \times 10^3 \\ st &:= \frac{2.067 \cdot dv + 1 \text{pocket}}{n\varphi w} = 418.38 \\ \cos w &:= \frac{\pi}{4} \\ \rho w &:= Asw \cdot \frac{\sin(\cos w)}{dv \cdot st} = 2.164 \times 10^{-3} \\ \eta c &:= \frac{\tau \text{Rdc}}{\tau \text{Ed}_{-\text{u}}} = 0.735 \\ \eta s &:= max \Biggl[0.8, \frac{dv}{150 \cdot \varphi w} + \Biggl(15 \cdot \frac{ddg}{dv} \Biggr)^{\frac{1}{2}} \Biggl(\frac{1}{\eta c \cdot \text{kpb}} \Biggr)^{\frac{3}{2}} \Biggr] = 0.8 \\ \tau \text{Rdcs} &:= min[\rho w \cdot \text{fywd}, \eta c \cdot \tau \text{Rdc} + \eta s \cdot (\rho w \cdot \text{fywd})] = 0.984 \quad \text{MPa} > \tau \text{Ed}_{-\text{u}} = 0.67 \quad \text{CHECK} \\ \rho w \cdot \text{fywd} = 0.984 \\ \eta \text{sys} &:= max \Biggl[1, 0.5 + 0.63 \cdot \left(\frac{b0}{dv} \Biggr)^{\frac{1}{4}} \Biggr] = 1.456 \\ \tau \text{Rdmax} &:= \eta \text{sys} \cdot \tau \text{Rdc} = 0.717 \quad \text{MPa} \qquad > \tau \text{Ed}_{-\text{u}} = 0.67 \quad \text{CHECK} \\ \text{ev} &:= 80 \quad \text{mm} \\ \text{dvout} &:= dv - \text{ev} = 705 \quad \text{mm} \\ b05out &:= b05 \cdot \left(\frac{dv}{dvout} \cdot \eta c \Biggr)^2 = 1.521 \times 10^4 \quad \text{mm} \\ \frac{(005out - 4 \cdot 1 \text{pocket})}{2 \cdot \pi} = 1.758 \times 10^3 \quad \text{mm} \quad \text{extension of the punching shear reinforcement} \\ \text{for the control section > absurdely large and not taking into account the ground reaction} \\ \end{cases}$$

STEP MECHANISM

PUNCHING SHEAR AT STEP CONTROL PERIMETER

Lbase := Lpocket + $4 \cdot \text{Hbase} = 1.84 \times 10^3$ mm

dv2 := dv - Hbase = 585mm

 $\tau Rdc_min2 := \frac{11}{\gamma v} \sqrt{\frac{-fck \cdot \gamma sred}{fsk} \cdot \frac{ddg}{dv2}} = 0.464$ MPa

 $b05_2 := min(3 \cdot dv2 \cdot 4 + 0.5 \cdot dv2 \cdot 2 \cdot \pi, Lbase \cdot 4 + 0.5 \cdot dv2 \cdot 2 \cdot \pi) = 8.858 \times 10^3$ mm

$$\tau \text{Ed}_A2 := \frac{\beta \cdot \text{NEd} \cdot \left[1 - \frac{(2.68 \cdot \text{dv} + \text{Lbase}) \cdot \text{Lbase} + \pi \cdot (0.67 \cdot \text{dv}2)^2}{L^2}\right]}{\text{Lbase} \cdot 4 \cdot \text{dv}} = 0.432 \quad \text{MPa}$$

< TRdc_min2 = 0.464 MPa CHECK

PUNCHING SHEAR AT EXTERNAL CONTROL PERIMETER

$$\tau \text{Ed}_{u2} := \frac{\beta \cdot \text{NEd} \cdot \left[1 - \frac{(2.68 \cdot \text{dv}2 + \text{Lbase}) \cdot \text{Lbase} + \pi \cdot (0.67 \cdot \text{dv}2)^2}{\text{L}^2}\right]}{\text{b05}_2 \cdot \text{dv2}} = 0.534 \text{ MPa}$$

$$b02 := 4 \cdot Lbase = 7.36 \times 10^3$$
 mm

$$kpb2 := if\left(3.6 \cdot \sqrt{1 - \frac{b02}{b05_2}} < 1, 1, if\left(3.6 \cdot \sqrt{1 - \frac{b02}{b05_2}} > 2.5, 2.5, 3.6 \cdot \sqrt{1 - \frac{b02}{b05_2}}\right)\right) = 1.48$$

$$\rho_{12} := \min\left[0.02, 12 \cdot \pi \cdot \frac{24^2}{4 \cdot (\text{Hfound} - \text{Hbase}) \cdot (\text{Lbase} + 6 \cdot \text{dv2})}\right] = 1.585 \times 10^{-3}$$

$$\tau Rdc2 := \min \left[\frac{0.6}{\gamma v} \cdot kpb2 \cdot \left(100 \cdot \rho 12 \cdot -fck \cdot \frac{ddg}{dv2} \right)^{\frac{1}{3}}, \frac{0.5}{\gamma v} \cdot \sqrt{-fck} \right] = 0.41 \qquad \text{MPa}$$
$$\frac{0.5}{\gamma v} \cdot \sqrt{-fck} = 1.923 \qquad \text{if not -> punching shear reinforcement is needed}$$

PUNCHING SHEAR REINFORCEMENT CALCULATION

$$st2 = \frac{2.067.4v2 + Lpocket}{ndw} = 364.78$$

$$pw2 := Asw. \frac{sin(cow)}{dv2 \cdot st2} = 3.331 \times 10^{-3}$$

$$n_{c}2 := \frac{7Rdc2}{rEd_{c}A2} = 0.951$$

$$n_{f}s2 := mat \left[0.8, \frac{dv2}{150.4vw} + \left(15.\frac{dag}{dv2} \right)^{\frac{1}{2}} \left(\frac{1}{\eta c^{2}.kpb2} \right)^{\frac{3}{2}} \right] = 0.8$$

$$rRdcs2 := min[pw:fywd_{.}\etac2 \cdot rRdc + \eta s2 \cdot (pw2.fywd)] = 0.984 \text{ MPa} > \tau Ed_{u} = 0.67 \quad CHECK$$

$$pw2:fywd = 1.514$$

$$n_{f}sys2 := mat \left[1.0.5 + 0.63 \left(\frac{b02}{dv2} \right)^{\frac{1}{4}} \right] = 1.687$$

$$rRdmas2 := \eta sys2 \cdot rRdc2 = 0.692 \quad MPa > \tau Ed_{u} = 0.67 \quad CHECK$$

19 Evaluation of environmental impact

19.1 Methodology

The evaluation of the environmental impact of the analysed structural members is preliminarily carried out considering the consumption of raw materials only. The analysis is carried out through the definition of environmental impact indexes. The environmental indexes considered in this study are, for the sake of conciseness, the compulsory ones as prescribed by the standard EN 15804:2012+A2:2019. Some parameters will be analysed in the following according to the most recurrent of the 10 indexes, i.e. Global-Warming Potential (GWP) in terms of mass of equivalent carbon dioxide associated to the structural bodies. The complete list of the voluntary Environmental Product Declaration (EPD) documents used in this calculation is given in the following table. The considered EPDs are emitted by certified material producers following the instructions of standards ISO 14025 and EN 15804:2012+A2:2019 currently valid.

MATERIAL	EPD	DENSITY (ton/m ³)	GWP (kgCO2eq/ton)	GWP (kgCO2eq/m³)
CEMENT I 52,5 R	EPDITALY0042	3,15	891	2807
CEMENT IV 32,5 N	EPDITALY0042	3,15	547	1723
SAND + GRAVEL	EPDITALY0088	1,5	22,5	34
SILICA FUME	EPD636	1,1 🤇	52	57
SUPERPLASTICISER	S-P-04323	1,1	504	555
WATER		Ŧ	-	-
REINF BARS B500	EPDITALY0015	7,85	809	6351
STRANDS Y1860	S-P-05640	7,85	2190	17192
PP MICROFIBRES	MD-21074-EN	0,91	1770	1611

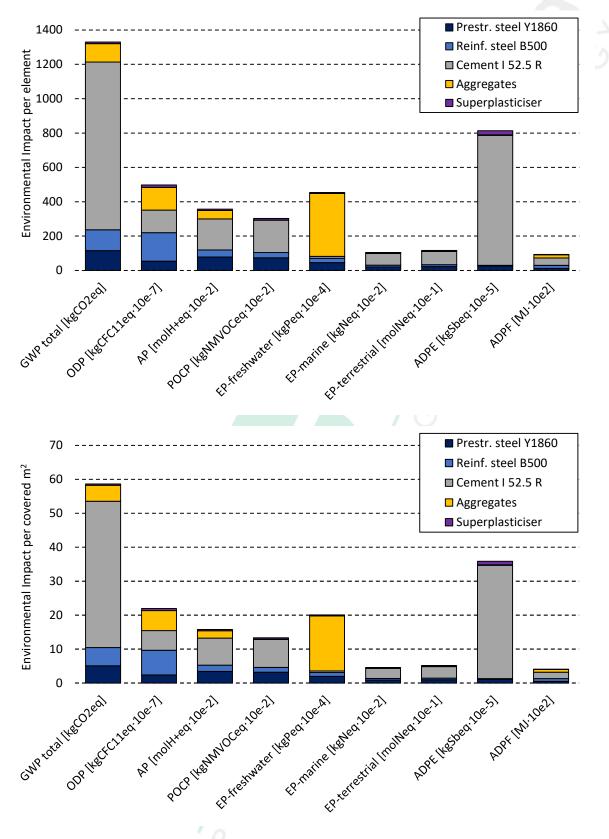
The analysis encompasses both the absolute impact of the single element and the specific impact of the elements, obtained by dividing the absolute impact by the influence area within the case study building. The latter value can give an approximate idea about the influence of the impact of the specific structural element over the whole building structure, to be usefully read in a comparative way among the different members.

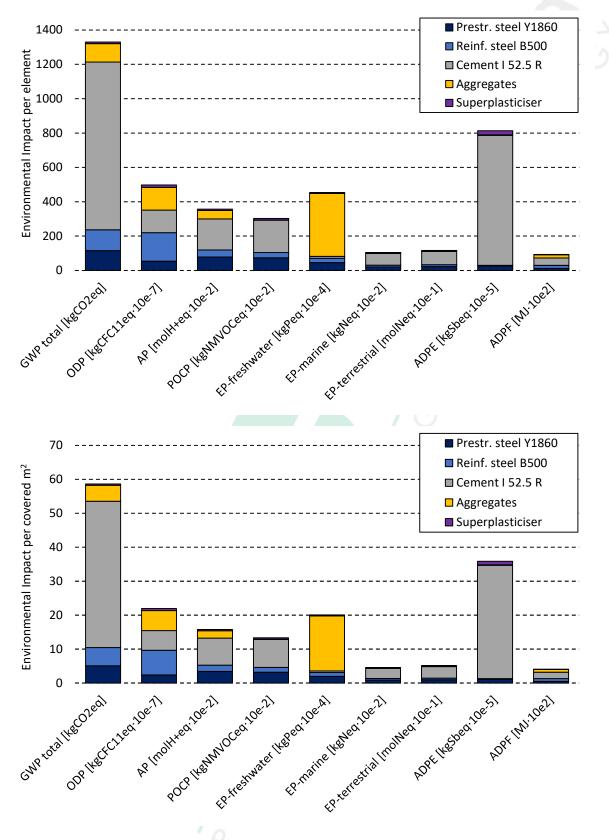
The values of the influence areas are given in the following:

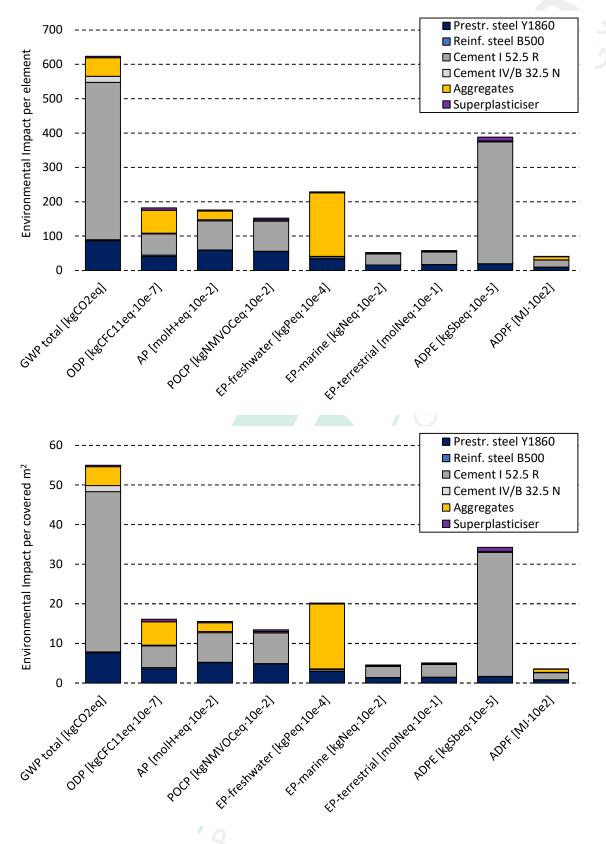
- TT floor element: 22.68 m²
- Hollowcore floor element: 11.34 m²
- Lattice girder floor element: 22.68 m²
- Prestressed and reinforced central beam: 76.55 m²
- Central column element: 273.38 m²
- Foundation footing: 273.38 m²

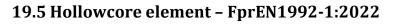
Concerning the different mix designs employed, a generic list used for the purpose of environmental impact evaluation is provided in the following:

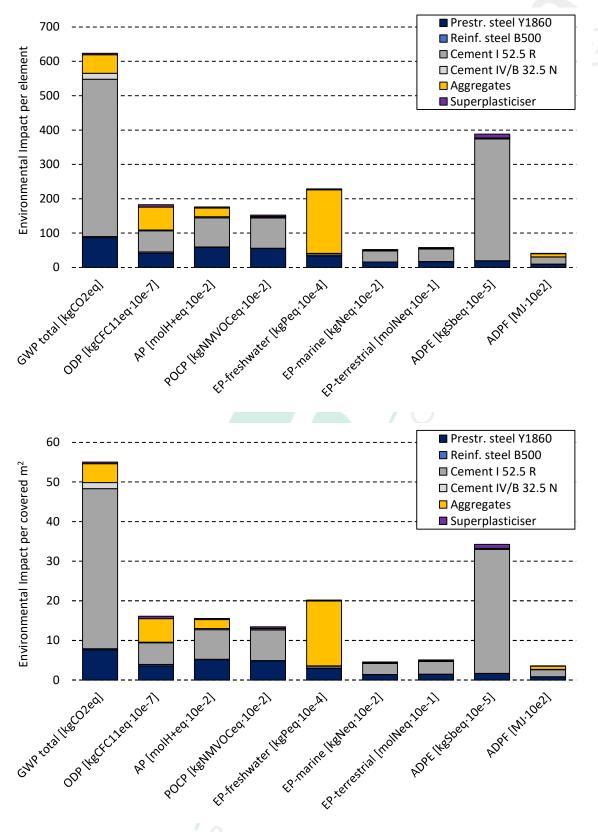
	PRECAST (C80/95)	PRECAST (C45/55)	CAST-IN-SITU (C25/30)
CEM I 52,5 R	540	420	1.
CEM IV/B 32,5 N	-	-	350
SAND + GRAVEL	1570	1820	1870
FILLER (SILICA FUME)	90	0/>	-
PP MICROFIBRES*	2	-0	-
SUPERPLASTICISER	7	7	-
WATER	180	150	190
TOTAL (kg/m ³)	2387	2396	2400
W/C RATIO (-)	0,33	0,36	0,54

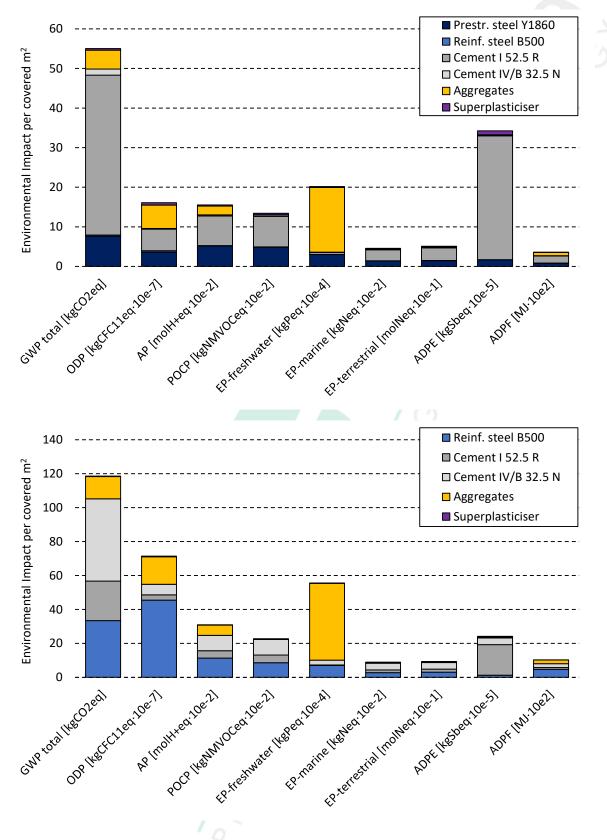

*only for column elements designed according to FprEN1992-1:2022

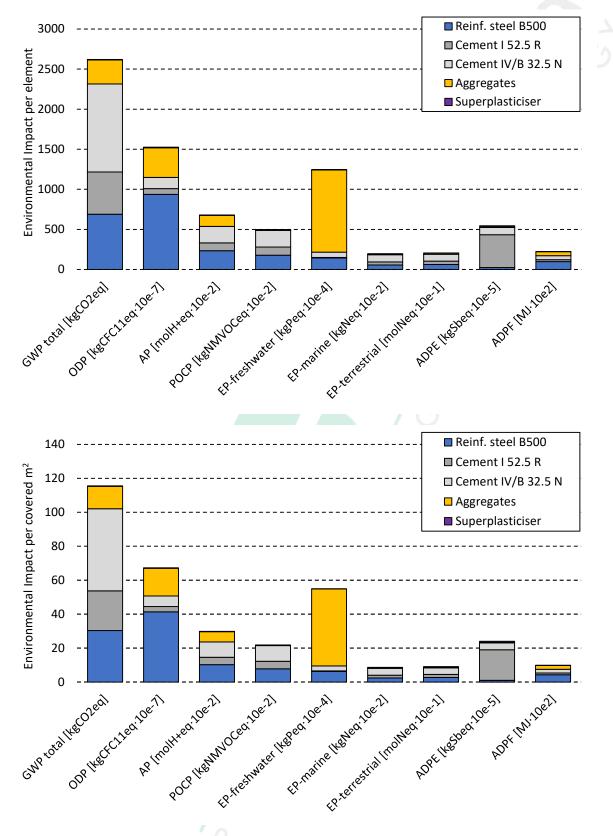

19.2 TT element - EN1992-1:2004

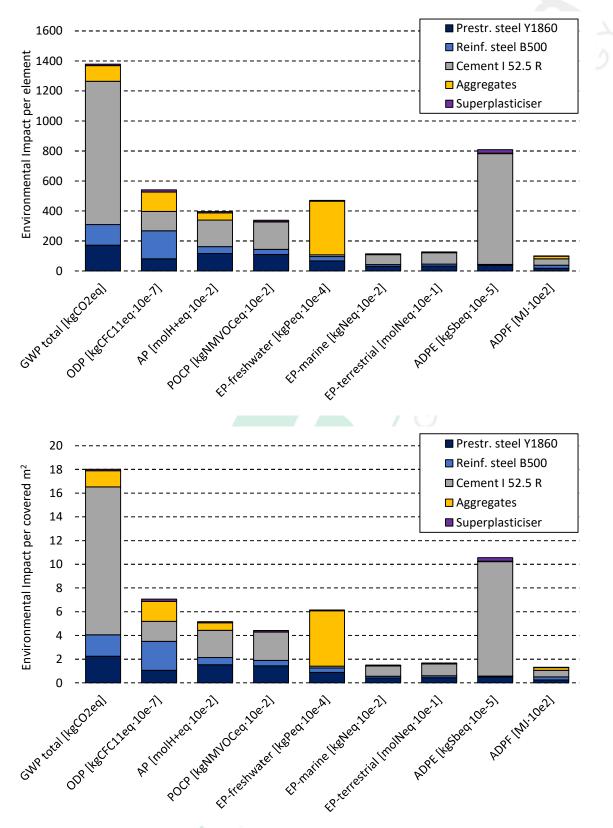

19.3 TT element - FprEN1992-1:2022

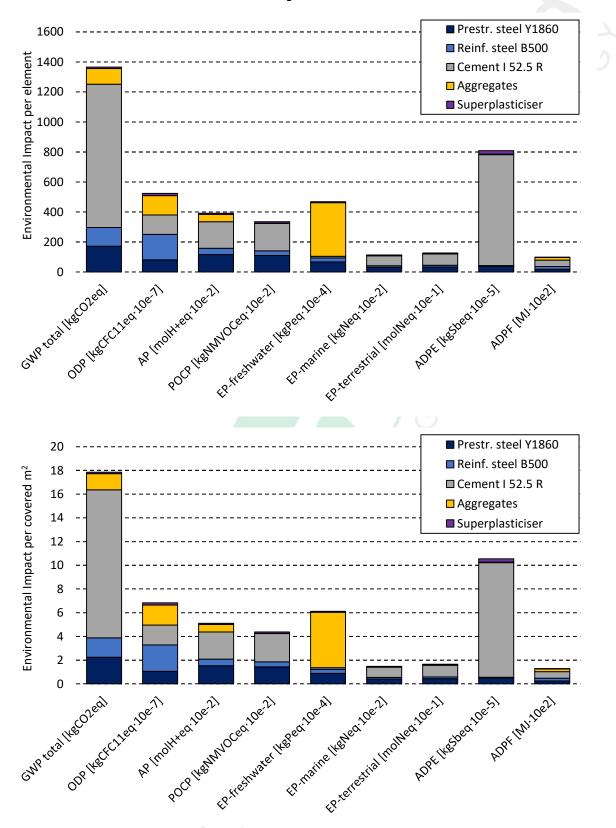



19.4 Hollowcore element -EN1992-1:2004

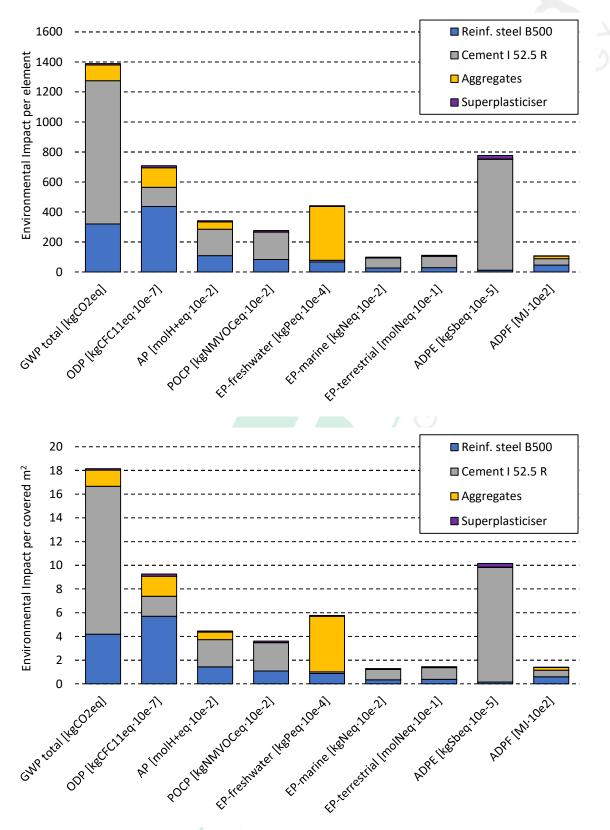



19.6 Lattice girder element -EN1992-1:2004

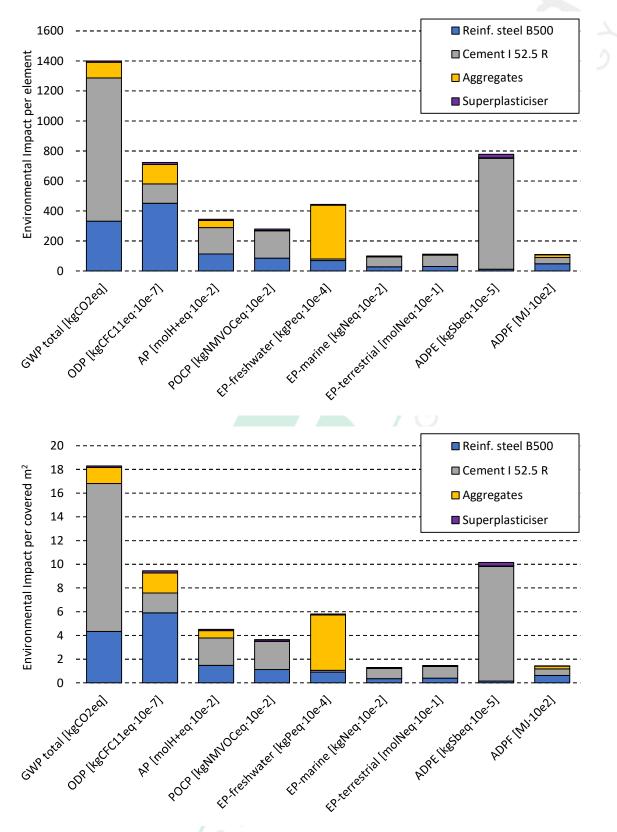




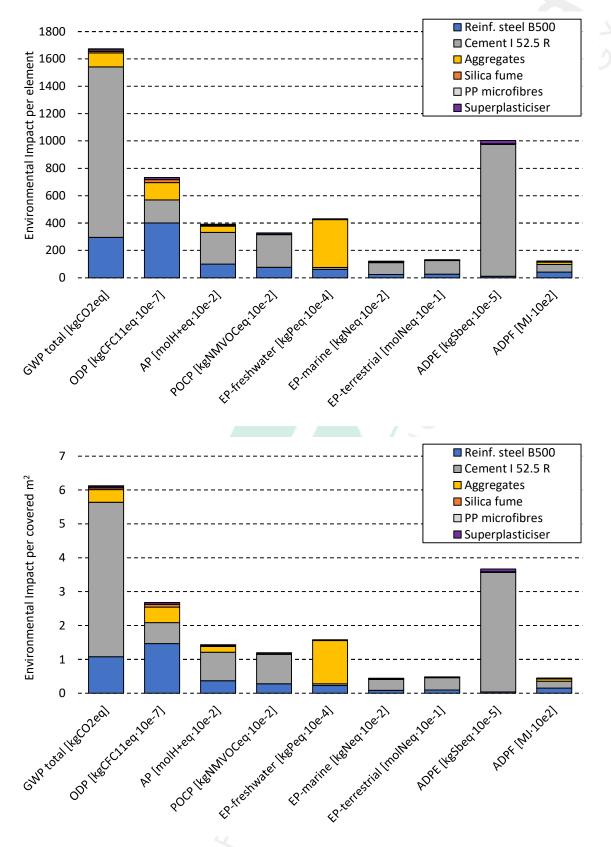
19.8 Prestressed beam element -EN1992-1:2004



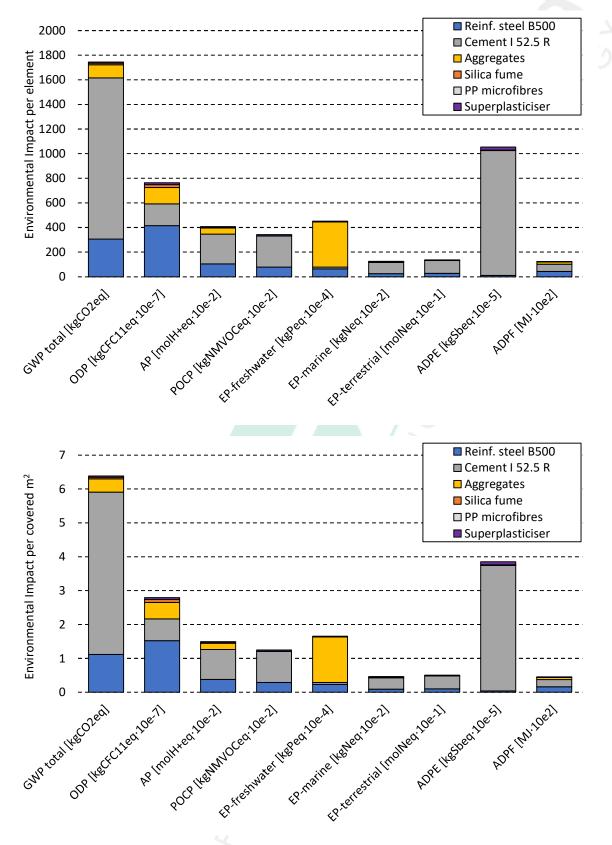
19.9 Prestressed beam element - FprEN1992-1:2022

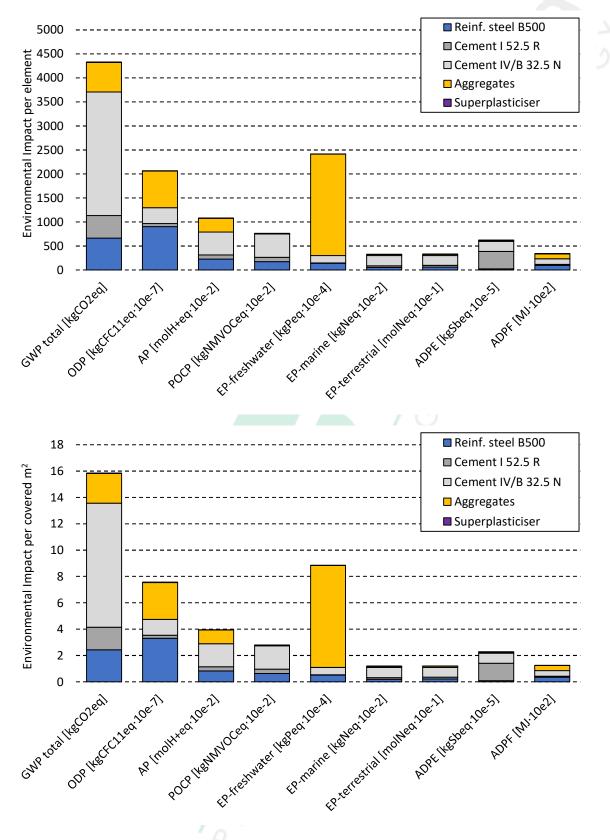


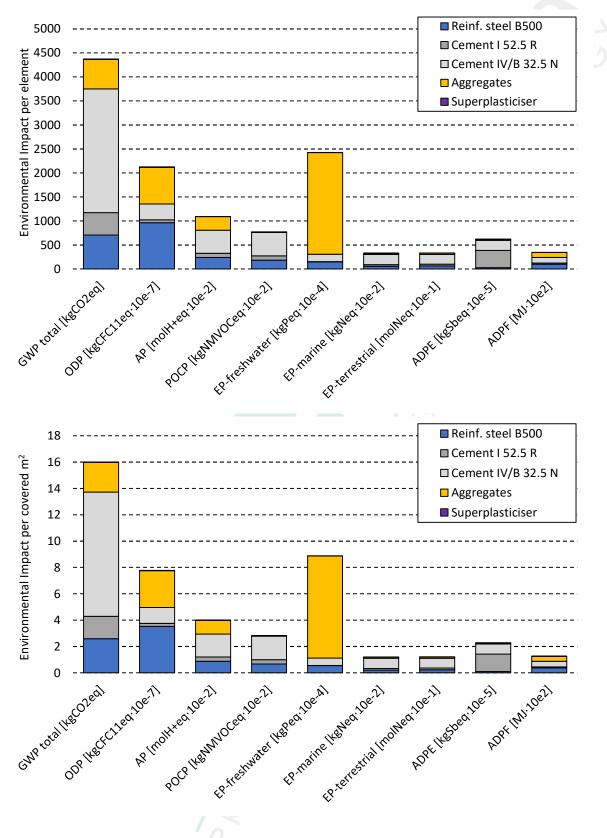
19.10 Reinforced beam element -EN1992-1:2004



19.11 Reinforced beam element - FprEN1992-1:2022


19.12 Column element -EN1992-1:2004


19.13 Column element - FprEN1992-1:2022


19.14 Foundation footing - EN1992-1:2004

20 Comments on main deviations from EN1992:2004 to FprEN1992:2022

Detailed comments about the main deviations found between the structural design flow of the analysed elements following either EN1992-1-1:2004 or FprEN1992-1-1:2022 are listed in the following in the format of lettered point. It is reminded that the list is not intended to highlight every difference between the two codes, but only those differences that came across during the design process of the evaluated structural members.

20.1 Constitutive law of materials

- a) Partial factor for prestressing steel in ULS: The design prestressing action can be managed following a single partial coefficient equal to 1.0 according to EN1992-1-1:2004 §2.4.2.2, to be multiplied by the mean design prestressing action, apart for the verification of local effects; it shall be managed following two partial coefficients according to FprEN1992-1-1:2022 §4.2.1.5 if the equivalent force approach is used following §7.6.1(1)b). No deviations were introduced in the project, since the stress approach was used. Apparently, to deal with equivalent force approach at ULS, where plasticisation of steel and concrete occurs, looks conceptually wrong and misleading.
- b) **Partial safety factors for materials**: two additional partial factors are introduced in FprEN1992-1-1:2022: γ_{ce} for the concrete elastic modulus, and γ_{v} for the shear and punching resistance of unreinforced concrete.
- c) Design strength of concrete in compression: a new factor η_{cc} lower than unity is introduced in FprEN1992-1-1:2022, which is intended to lower the concrete strength in compression for mixes of class higher than C40/50. Thus, this affects all elements that were designed in the project. For class C45/55 mix the reduction factor is equal to 0.961. For class C80/95 mix the reduction factor is equal to 0.794. It is pointed out that the formula affects even the most performing mixes classified as Normal Strength Concrete, and not only High Performance or High Strength Concrete.
- d) Formula for the evaluation of Ecm: the formulae for the evaluation of the mean longitudinal elastic modulus of concrete is different in the two codes. It is reported that results are different but not by much (42.24 Gpa for EN1992-1-1:2004 versus 42.26 GPa for FprEN1992-1-1:2022 for class C80/95 mix).
- e) Formula for the evaluation of εcu1: the formulae for the evaluation of the ultimate strain of concrete in compression according to the modelling strategy 1 is different in the two codes. It is reported that results are different but not by much (2.803‰ for EN1992-1-1:2004 versus 2.816‰ for FprEN1992-1-1:2022 for class C80/95 mix).
- f) **Simplified constitutive law of concrete in compression**: in FprEN1992-1-1:2022 there is a relevant simplification in terms of simplified constitutive laws for concrete: the triangle-rectangle constitutive law was deleted, and the parameters defining parable-rectangle and

dic

stress block laws were modified by deleting the dependency of their parameters on the class of concrete.

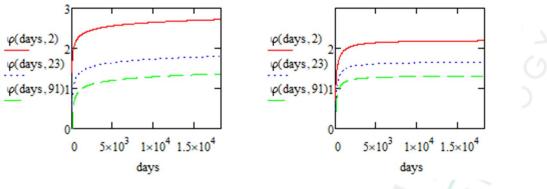
- g) Ultimate strain of concrete mainly subjected to compression: the limitation of ultimate strain to $\varepsilon_{c2} / \varepsilon_{c3}$ contained in EN1992-1-1:2004 is disappeared in FprEN1992-1-1:2022. As a consequence, a potential for better exploitation of steel rebars in compressed column elements is introduced in the new EC2-1-1.
- h) **Strength of concrete in tension**: a new formulation is proposed in FprEN1992-1-1:2022. Results do not change significantly with respect to the old formula of EN1992-1-1:2004.
- i) Elastic-perfect-plastic constitutive law of reinforcing and prestressing steel: this point is a remark rather than an observation of difference. The typical elastic-perfect-plastic relationship is defined in both standards with an indefinite plastic branch. As a consequence, if this typical constitutive law is assumed, cross-sections will never fail on rebar side. To be noted that this is valid for all grades of steel, also for example B500A or for Y1860, despite being them much less ductile than B500C.
- j) Elastic-hardening constitutive law of reinforcing steel: the value of ε_{ud} in FprEN1992-1-1:2022 is lower with respect to the value in EN1992-1-1:2004. The characteristic ultimate strain to be used for elastic-hardening constitutive law is in the new document divided by the partial safety factor of the steel material γ_s .
- k) Equivalent yield strength of prestressing steel: the characteristic equivalent yield strength at 0.1% of residual strain at unload in FprEN1992-1-1:2022 is given in Table 5.6 as 1640 MPa, which is lower with respect to the value in EN1992-1-1:2004, equal to 0.9 fptk = 1674 MPa.
- 1) Elastic-hardening constitutive law of prestressing steel: the characteristic ultimate strain of prestressing steel ε_{puk} in FprEN1992-1-1:2022 is equal to 3.5%, much larger with respect to the suggested value in EN1992-1-1:2004, which turns out being 2.2%.
- m) **Reduced partial factors thanks to production control**: both standards allow to reduce the partial safety factors for materials for precast concrete members due to the adoption of a production control procedure typical of precast production plants. Despite the procedure is different, the resulting reduced coefficients are the same for both documents (1.4 for concrete and 1.1 for reinforcement). Nevertheless, different strategies may lead to different factors.
- n) Confinement contribution of stirrups for the definition of the concrete core constitutive law: FprEN1992-1-1:2022 proposes a method to evaluate the contribution from stirrups in the effective confinement of concrete cores in terms of stress σ_2 . This method, not cited in EN1992-1-1:2004, helps the designer in understanding how to implement this contribution instead of making reference to methods not included in the standard. Moreover, apart from the method used to evaluate the confining stress, also the formulation concerning the modification of the constitutive law of concrete in compression is radically modified in the new document. As an exemplificative application within the column element (in the areas where it is not lightened by the plastic pipe), the confinement effect resulted in a limited

(practically negligible) increase of strength and in a relevant increase of strain capacity (more than double).

o) Evolution of strength and elastic longitudinal modulus over time: the formulae for the evaluation of the evolution of compression or tension strength over time are formally similar in the two documents, although the constitutive parameters s, β_{cc} are defined in a different way. Moreover, the exponents of the formulae for the determination of E_{cmj} and f_{ctmj} are slightly different. As a result, at 2 days of age f_{cmj} , f_{ctmj} and E_{cmj} are 30.6 MPa, 2.73 MPa, and 29.7 GPa referred to FprEN1992-1-1:2022, and 30.6 MPa, 2.19 MPa, and 30.7 GPa referred to EN1992-1-1:2004, respectively. Hence, the compressive strength results identical, the tensile strength remarkably higher, and the elastic modulus slightly lower.

20.2 Flexural and compressive strength

No differences were noted in the procedures for the check of flexural/compressive strength between the two standards.


20.3 Serviceability

- a) **Method for evaluation of the SLS deflections**: The rigorous method of double integration of the curvature was used following both documents, according to §9.3.4(7) of FprEN1992-1-1:2022 and according to §7.4.3(7) of EN1992-1-1:2004. To be noted that the general non-linear constitutive law of concrete (indicated for structural assessment) should be used to correctly capture the concrete deformability in the pseudo-elastic behaviour phase.
- b) Allowed stress for strands: The allowed stress for prestressing strands is less severe in FprEN1992-1-1:2022 with respect to the current version. In particular, the allowed stress is increased from 0.75·fpk (§7.2(5) of EN1992-1-1:2004) to 0.80·fpk (Table §9.1 of FprEN1992-1-1:2022).
- c) Creep coefficients: The method for the calculation of the creep coefficients in classical viscoelasticity regime is completely different in the two documents. In particular, it is pointed out that the creep coefficient at early age of concrete is much higher according to FprEN1992-1-1:2022 with respect to EN1992-1-1:2004 (for two days of age, the linear effects at 50 years of life span are magnified by 2.72 versus 2.19), which affects the contribution of prestressing. Nevertheless, this difference is becoming narrower for loads applied at larger time. In the following, two graph comparing the creep functions for the two documents are reported (concrete C45/55):

Creep coefficient - FprEN1992-1-1:2022

EN1992-1-1:2004

- d) Limit between linear and non-linear creep: The limit for the consideration of non-linear creep slightly changes from 0.45 fck (§7.2(3) of EN1992-1-1:2004) to 0.40 fcm (§9.1(4) of FprEN1992-1-1:2022).
- e) **Maximum crack width**: The limit for the maximum crack width allowed in EN1992-1-1:2004, equal to 0.2 mm for prestressed members, is increased to 0.3 mm in FprEN1992-1-1:2022.
- f) Expected crack width calculation: The approach is similar in the two documents, although a completely different definition for the spacing of the cracks function sr_{max} is provided. As a result, for the beam with mild reinforcement the crack width in frequent load combination resulted higher in FprEN1992-1-1:2022 (0.126 mm) with respect to the width calculated according to EN1992-1-1:2004 (0.091 mm).
- g) **Shrinkage**: Formulae for the evaluation of the shrinkage strain of concrete over time have been deeply modified in FprEN1992-1-1:2022, despite the basic data needed for the calculation is similar to EN1992-1-1:2004. As a result, the final shrinkage at 50 years of life service of the lattice girder element designed according to FprEN1992-1-1:2022 results relevantly lower than what calculated according to EN1992-1-1:2004.

20.4 Shear, punching shear and strut&tie

- a) **Type of check for shear**: Different strategies are introduced in FprEN1992-1-1:2022 with regard to ULS shear checks. In particular, following §8.2.1(1), if the maximum tangential stress is lower than a minimum $\tau_{Rdc,min}$, detailed shear check can be omitted; if the maximum tangential stress is lower than τ_{Rdc} , no calculated shear reinforcement can be placed; elsewise, a detailed calculation shall be carried out.
- b) Check procedure for members not reinforced for shear: Two alternative calculation procedures are suggested, leading to different results. They both differ relevantly from the procedure suggested by EN1992-1-1:2004. The devoted chapter is also not fully clear in some passages concerning the effect of axial forces, including the following "For the given factor k1 according to Formula (8.34), the effective depth d in Formula (8.33) may be replaced by av,0 where av,0 is determined according to Formulae (8.29) and (8.30), without

considering in MEd und VEd the effect of prestressing or external load that produces the compressive axial force.". By reading this chapter, the designer does not fully understand whether d is to be replaced in formula (8.34), or in (8.33), or in both. Moreover, in the same chapter the main difference between the two suggested alternative procedures consists in including or excluding the effect of prestressing on bending, which apparently is null in case of straight strands typical of pre-tensioning technique.

- c) Cotangent for the ULS shear check of members with shear reinforcement: Given stirrups of steel grade B500A are used, as typical for small rebar diameters, the maximum cotangent of a member in bending shall be limited to 2.0 according to §8.2.3(4) of FprEN1992-1-1:2022, instead of 2.5 in EN1992-1-1:2004, following the limitation to 80% of the suggested value.
- d) Basic formulae for the ULS shear check of members with shear reinforcement: The basic formulae are the same of the Morsch truss model. However, the design shear associated to the failure of stirrups ties or concrete struts is expressed in terms of tangential stress instead of loads over the truss moduli, which is somehow misleading. Moreover, the formula for the concrete strut check is slightly different by means of (i) a single value of the concrete strength reduction coefficient v equal to 0.5 in §8.2.3(6) of FprEN1992-1-1:2022, instead of a slightly larger value as a function of concrete class provided in §6.2.3 of EN1992-1-1:2004, and (ii) the coefficient α_{cw} accounting in EN1992-1-1:2004 for the compression state of stress of the concrete chord, is missing in Fpr1992-1-1:2022.
- e) Formulae for the ULS shear check of precast members without shear reinforcement: In both documents a specific period is inserted concerning a reduction of shear resistance for precast members not reinforced in shear (mainly hollow core). Despite the objective of the two formulations is the same, i.e. checking plane-state stress to not leave the beam form a crack in shear, the actual proposed formulae yield to different results. In particular, a more general approach is contained in FprEN1992-1-1:2022, which in principle would require the identification of the most stressed chord in combined longitudinal and transverse directions along the depth of the cross-section. The results, in line with other points of the documents, highlight a larger strength associated with the approach of FprEN1992-1-1:2022.
- f) Shear between web and flanges: The approach is similar in the two documents. The additional horizontal reinforcement is calculated according to the same formula. The check on the compressed concrete struts is calculated according to a different formula, although it differs only for the formal mathematics, since it yields to the same result.
- g) Shear at the interface between concretes cast in different times: The approach is similar in the two documents. Nevertheless, the formulae of FprEN1992-1-1:2022 are relevantly different from the ones of EN1992-1-1:2004. As a result, coherently with the whole document, the strength at the interface between the two concretes for the lattice girders becomes slightly higher with the new document (0.687 MPa versus 0.643 MPa). To be noted that the values of cohesion and friction coefficients are completely different.

- h) **Procedure for calculation of punching shear**: Analogously to the procedure for the check of shear, FprEN1992-1-1:2022 introduces a "gate" severe check with a particularly low punching shear resistance, which, if fulfilled, avoids the need to carry out further calculations.
- i) Definition of control perimeter for punching shear: The definition of control perimeter for punching shear in FprEN1992-1-1:2022 is similar in terms or approach but much more severe in terms of quantitative results with respect to the current standard: instead of a fixed stress diffusion angle θ =26.6° in EN1992-1-1:2004, with the check to be carried out in correspondence of this perimeter, a lower fixed stress diffusion angle θ =45° is given in FprEN1992-1-1:2022, moreover with the check to be carried out at half of the distance dv from the load area. This highly reduces the control perimeter in the new standard, making the check for punching shear of unreinforced concrete structures relevantly more severe with respect to the current standard. For the case of the designed foundation footing, the new procedure yielded to the need of punching shear reinforcement, placed in the form of bent rebars.
- j) Control sections in punching shear: FprEN1992-1-1:2022 explicitly cites, also with the aid of an explicative image, that step foundation footings must be checked at all step sections, assuming each step as a loading area, which was not necessary according to EN1992-1-1:2004. For the designed foundation case study, it did not yield to any modification of the element.
- k) Extension of punching shear reinforcement: The formula for the length of extension of the punching shear reinforcement contained in FprEN1992-1-1:2022 provides large values which do not match with foundation elements resting over soil.
- 1) Strut&Tie method for corbels: The resistance of compressed struts varies significantly between the two standards. In particular, the reduction factor v' of strut compressive strength, which was related to the concrete class only in EN1992-1-1:2004, is drastically changed in FprEN1992-1-1:2022, where it is related to the angle of the strut. With respect to the previous standard, the coefficient results less severe for large angles, and more severe for small angles. To be noted that the reinforcement and strut&tie schemes provided in annex J of EN1992-1-1:2004 are not proposed in FprEN1992-1-1:2022, apart from a simplified sketch in Fig. 8.5.

20.5 Fire

dic

- a) **Thermal conductivity curve for concrete**: The approach of the two alternative curves proposed in EN1992-1-2:2004 was overcome in FprEN1992-1-2:2022 thanks to the introduction of a single curve, which turns out to be intermediate with respect to the ones previously introduced. The other thermal/physical properties of concrete were not changed.
- b) Mechanical stress-strain relationship of concrete with temperature: the advanced stressstrain relationship of concrete was not changed for concrete classes below C70/85. For class

C70/85 or higher, only a very minor is introduced in FprEN1992-1-1:2022, concerning the strength loss in the range 20 °C – 100 °C.

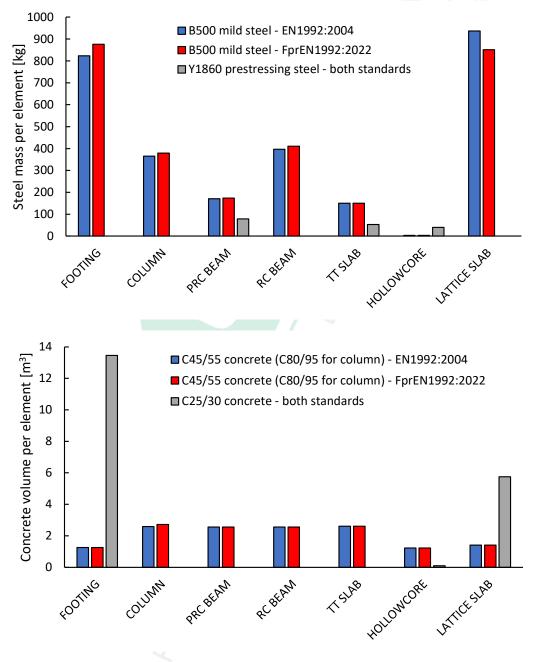
- c) **Concrete spalling**: rules are introduced in §10 of Fpr1992-1-2:2022 concerning the mitigation of concrete spalling. In particular, complex numerical assessments or the introduction of polypropylene microfibres in the concrete mix are requested for members of concrete class higher than C70/85 or for members with thin exposed web. In the project, it turned out that 2.0 kg/m³ polypropylene microfibres need to be implemented in the concrete mix for the column element, only, due to its high concrete class, given the more standard mix for class C45/55 concrete employed for the other elements does not contain a quantity of silica fume larger than 6% by weight of cement. It is noted that other types of fillers are not apparently included into this restriction.
- d) **Checks in bending**: the Isotherm 500 °C method is not anymore explicitly included into Fpr1992-1-2:2022, but a similar procedure is introduced. The dimensions of the concrete area are given by simplified formulations, where it is noted that in §7.3.1(4) concrete classes higher than C70/85 are penalised by means of 15% additional reduction of rim inefficient thickness. Nevertheless, a thermal mapping is always necessary to evaluate the temperature in the steel reinforcement. It is pointed out that the Isotherm 500°C method was not used (advanced method was used instead) apart from the column model method for the evaluation of the fire resistance of the column element including second order effects.
- e) Checks in shear: the same method of the reduced section is proposed in the two documents. However, the definition of the reference temperature of the transverse reinforcement is different: in EN1992-1-2:2004 it is defined as the position defining the effective tensile area following EN1992-1-1:2004, or other points not fully clearly identified in the procedure and only indicatively positioned in the drawings of Figure D.2. In FprEN1992-1-2:2022 it is defined geometrically on the basis of the shape of the cross-section as the point at mid-depth of the shear-resisting web, which appears being more logical for certain shapes typical of precast concrete elements such as inverted-T-shaped, L-shaped, I-shaped or Y-shaped beams, having larger bottom bulb. Moreover, in the new document the definition of the reduced cross-section may follow the method alternative to the Isotherm 500 °C, and the shear resistance is checked in accordance with the procedure described in FprEN1992-1-1:2004, which provides the differences previously highlighted.

20.6 Additional requirements

a) Minimum concrete cover: The approach to evaluate the minimum concrete cover is similar between the two standards, although what are named Structural Classes (SC) in EN1992-1-1:2004 are transformed into Exposure Resistance Classes (ERC) in FprEN1992-1-1:2022 with regards to minimum cover for durability $c_{min,dur}$. Differently from EN1992-1-1:2004, where the basic SC was recommended (S4), in Fpr1992-1-1:2022 there is no suggestion about the basic ERC to select, which is referred to the procedures included in the standard

EN 206:2013. To be noted that the reference to an outer standard different from EC2 is out of the style of the document, which typically is conceived to provide all information to carry out the complete design. Moreover, there is no perfect correspondence between SC and ERC in terms of suggested carbonation-induced minimum cover different. Apparently, the ERC class most similar to S4 is XRC4, despite for XC4 the minimum cover results less. This issue was however overcome by the adoption of the alternative procedure provided in Annex P of FprEN1992-1-1:2022, which is exactly the same of the old version. Thus, no deviations are reported between the position of mild and prestressing reinforcements according to the two EC2 versions.

- b) Minimum amount of main flexural reinforcement: The procedure for the evaluation of the minimum reinforcement is similar in both documents, although in FprEN1992-1-1:2022 it requires more passages. As a result, it was observed a very remarkable lowering of the minimum amount in the new document (for the beam, slightly more than 3 times). Moreover, an explicit condition of overstrength after cracking is introduced in FprEN1992-1-1:2022, which affects elements predominantly subjected to bending. No changes were observed in the formula for the minimum amount of shear reinforcement.
- c) Minimum amount of reinforcement at support: FprEN1992-1-1:2022 introduces in Table §12.2(5) a minimum amount of bottom longitudinal reinforcement at the end support equal to $0.25 \cdot A_{s,req,span}$, where it is specified that $A_{s,req,span}$ is the area of steel required for positive bending moments of the span. This definition is not precise, since it does not state that the moment to be considered is the maximum. However, interpreting the definition, the maximum bending moment was used to design the support reinforcement. In EN1992-1-1:2004 a similar concept is introduced, however referring explicitly to the area of steel provided (not required).
- d) Anchorage length: The formulae in the two standards appear being completely different. In particular, the formulation included in FprEN1992-1-1:2022 yields to longer anchorage length for mild reinforcement. For the case of the beam, the straight anchorage length is equal to 28.5Φ in the new document, against 26.6Φ in the current one. Surprisingly, although coherently with the lower transfer length of prestressing discussed in the following point, the formula for the anchorage of prestressing tendons yields to the lower length of 1539 mm against 1670 mm. Finally, a more clearer and sound formula is provided in the new standard for what concerns the effect of bends at different angles, which allows to relevantly reduce the total anchorage length of bent rebars.
- e) **Transfer of prestress**: The formula in FprEN1992-1-1:2022 differs substantially from that of EN1992-1-1:2004, since it is related to the concrete compressive strength rather than its tensile strength, and also several coefficients are different. As a result, the formulation of FprEN1992-1-1:2022 yields to a remarkably lower transfer length of prestressing of 907 mm against 1031 mm from EN1992-1-1:2004.



21 Conclusions

21.1 Comparison in terms of volume of material employed

The conclusions of the work are given in terms of a comparison of the quantities of different materials employed, in the following graphs, and in terms of qualitative indications about the rationale of the proposed concept and structural design and the differences found in the application of the current draft of the new Eurocode FprEN1992-1:2022 with respect to the current standard EN1992-1:2004.

21.2 General comments about the design of the elements

TT element: a commercial cross-section with original 30 cm of depth was selected. However, due to the large distributed floor loads and due to the request to not consider a reinforced concrete topping, making a fully precast slab, the original thickness of 5 cm of the top slab was increased to 8 cm, assuming sides are mounted over the production mould in the precast factory. ULS bending resulted being the critical factor for the selection of the longitudinal prestressing reinforcement. The minimum reinforcement requirement for transverse bars resulted critical for the disposition of the transverse bars, although close to what required for shear resistance close to the end supports. The double mesh of the top slab was integrated with additional straight rebars in the vicinity to the end supports due to shear at web-flange interface. Additional short U-shaped rebars were placed at the supports to cover the bending moment request from the Mörsch truss scheme.

No differences were adopted between the elements design according to the two standards.

Hollowcore element: a commercial cross-section with 26.5 cm of depth was selected. As required by the extruding production method of hollowcore members, only prestressing tendons were assumed to be incorporated in the precast element. Their design was related to the need for bending check. Two additional straight rebars per member end with end thread are designed to be post-inserted (screwed) into mechanical couplers cast into the beam element, and later filled with in-situ concrete pouring. Their function is double: to provide additional shear strength close to the end supports, and to provide a mechanical connection for robustness and diaphragm stiffening.

The only difference between the design of the element according to the two standards concerns the length of the additional straight rebars, which following Fpr1992-1:2022 is slightly larger. Indeed, an important difference consists in the shear resistance calculation, which according to Fpr1992-1:2022 would not have needed to cast the selected holes. They were assumed to be cast anyway in order to fulfil their second function, as previously described.

Lattice girder element: the conception of the element starts from a commercial product of precast lattice plank. This element needed to be heavily reinforced in bending for the combination of the following reasons: it is not prestressed, and it turns out being a solid concrete slab, and thus its self-weight is large. In particular, the critical request was the one related to deflection limitation. Despite an initial camber equal to the maximum allowed by the code was set, the large quantity of longitudinal reinforcement in the main working direction of the element was introduced in order to reduce the cracked stiffness of the element and, subsequently, the final viscoelastic deflection. Moreover, a significant quantity of transverse reinforcement was inserted, in order to respect the request by both standards to install a certain percentage of the longitudinal reinforcement in the transverse direction. To be noted that the four lattice trusses cast in the precast plank are not needed in the final

configuration following both standards. Anyhow, they are needed for intermediate construction phases. Finally, short U-shaped rebars were installed as additional end reinforcement to provide bending resistance also near the supports.

The main difference between the design following the two standards refers to the minimum quantity of transverse reinforcement for slabs, which is lower in FprEN1992-1:2022.

Prestressed beam element: the beam element was conceived with proper dimensions to laterally support the slab members. The reinforcement cages were conceived in order to be preassembled in the precast factory, lifted and installed after the tendons and the lower mesh are ready on the mould. The longitudinal reinforcement was designed in order to fulfill the ULS condition for bending moment.

The main difference between the elements designed following the two standards is in the quantity of stirrups: closer to the end support, the spacing for FprEN1992-1:2022 results narrower due to the difference in the strut angle, but soon after it becomes larger due to the stronger shear resistance of elements not requiring shear reinforcement. In this area, the minimum reinforcement requirement determines the stirrup spacing.

- Reinforced beam element: The longitudinal reinforcement was designed in order to fulfill the SLS condition for deflection control. Despite an initial camber equal to the maximum allowed by the code was set, the longitudinal reinforcement was designed in order to reduce the cracked stiffness of the element and, subsequently, the final viscoelastic deflection. The main difference between the elements designed following the two standards is in the quantity of stirrups: closer to the end support, the spacing for FprEN1992-1:2022 results narrower due to the difference in the strut angle, but soon after it becomes larger due to the stronger shear resistance of elements not requiring shear reinforcement. In this area, the minimum reinforcement requirement determines the stirrup spacing.
- Column element: The side width of the square column element was selected equal to 40 cm in order to be the same of the beam top, for geometrical compatibility. This element was designed with a high-performance concrete class: C80/95. Due to the high compressive strength of concrete, which would have been much over-designed in the configuration of a solid element, the cross-section was lightened by inserting in production long pieces of plastic pipe in central position. The pipes, not intended to work as a rain drainage system, are discrete and interrupted in correspondence of the corbels providing support for the beams. The bottom joint with the foundation in assumed to be a pocket joint, and thus the column is actually longer than what needed in its final configuration. Moreover, the column was deemed to be too long to be transported and erected in a single piece, and thus it was divided at about half of the height of the building, out of the corbel areas. The two elements are assumed to be connected by means of protruding rebars from the top column element, inserted into thin metallic pipes cast into the bottom element, providing large tolerance.

After external bracing and verticality regulation, the joint is completed by pouring highstrength mortar which fills the pipes and the gap. The column element resulted subjected to very low bending actions (moment and shear), being the axial load the clear critical action. Nevertheless, considering a minimum axial load eccentricity of 20 mm, following both standards, the element was checked against the resulting bending moment distribution. FprEN1992-1:2022 provides a strength reduction coefficient for high performance concrete, which as a consequence allowed to lighten less the column cross-section. Thus, the column design according to EN1992-1:2004 contains less concrete than the one designed according to FprEN1992-1:2022. Moreover, similar considerations apply also to the steel volume, since it was designed according to the minimum reinforcement criterion, as well as the stirrup distribution.

Foundation footing: The foundation footing is assumed to be partially precast, with the pocket element being produced in the precast plant, and the lower slab to be cast-in-situ. The reinforcement of the pocket was selected as the standard minimum for such elements, since very low bending moment and shear actions are expected. U-shaped rebars are assumed to protrude from the precast element and to be connected with the reinforcing cage to be assembled in-situ. Not being the soil object of dedicated design, the reinforced concrete foundation was designed assuming a simplified constant stress distribution from the ground, associated to a Winkler-type soil model with rigid foundation. The reinforcement of the lower cast-in-situ slab was designed following bending actions induced by the cantilevering of the lower slab with respect to the precast. Additional small-diameter rebars were placed above the main bottom longitudinal ones in order to provide stability to the cage in the transitory phases before casting.

The difference between the foundations designed according to the two standards concerns the punching shear reinforcement: indeed, punching shear reinforcement was calculated not to be necessary following EN1992-1:2004, while a series of inclined rebars were inserted in the cage of the element designed according to Fpr1992-1:2022, mainly due to the different approach in the definition of the critical punching perimeter.

21.3 Comparison in terms of fire resistance

dic

Concerning the behaviour of the studied elements in fire, the check of bending resistance was carried out with analytical method as shown in the previous chapters with reference to the exposure time to the nominal standard ISO834 fire curve requested (60 minutes). This check was proved to never be critical concerning the design of concrete sections and reinforcement, apart from the addition of polypropylene microfibres for the high-strength concrete mix of the column elements following FprEN1992:2022 only.

The following table resumes the bending resistance of the investigated elements in terms of time (in minutes) associated with the attainment of their ultimate strength. It can be commented that the

effect of the different conductivity curves of concrete (between the lower proposed in EN1992:2004 and the single one proposed in FprEN1992:2022) is limited to very few percentage points and practically negligible, for all cases where the same concrete cross-section was compared. Higher differences in the thermal fields are expected to be observed at early stages of exposure, typically far from being associated to structural safety issues.

	Bending resistance to ISO834 [min]		
	1	2	
Element	EN1992:2004*	FprEN1992:2022	(2-1)/1[%]
TT element	82	80	-2.44
Hollow core	116	115	-0.86
Lattice girder	272	270	-0.74
Prestressed beam	154	153	-0.65
Reinforced beam	196	195	-0.51
Column [‡]	130	169	+30.00

*Calculated using the lower conductivity curve of concrete

[‡]Columns designed with different codes have different concrete section

21.4 Comments about easiness to read and apply FprEN1992-1:2022

Different considerations may be drawn from the comparison of the current and proposed versions of Eurocode 2.

Concerning FprEN1992-1-1:2022, it can be preliminarily observed that the number of pages is relevantly grown to 410 pages from the 227 pages of the current version of EN1992-1-1:2004, which by itself is a factor which determines a difficulty in handling and finding the required information in such a large volume of pages.

In particular, FprEN1992-1-1:2022 is characterised by a very large number of initial pages dedicated to list of content, introduction, normative references and especially definitions and symbols, which ends at page 66. For reference, in the current version of the document this section ends at page 20. Indeed, the section dedicated to definitions and symbols may seem very large in the new version of the document, although more attention has been paid to avoid any duplication of symbols, with potential confusing or unclear meaning by the reader, which sometimes happens in the current version of the code. On the other hand, the meticulous avoidance of symbol repetitions in the new document brought to the definition of a whole new set of symbols, which not always have direct and immediate correspondence to the symbols used in the current version of the document. This adds difficulties in comparing the procedures of the two codes, although the documents contain all information to solve this issue and find the correct corresponding terms/symbol from the current to the new version.

One positive aspect of the organisation of FprEN1992-1-1:2022 concerns the correspondence of the order of the main content with respect to EN1992-1-1:2004: Basis of design ; Materials ; Durability and concrete cover; Structural analysis; Ultimate Limit States (ULS); Serviceability Limit States (SLS); Fatigue; Detailing of reinforcement and post-tensioning tendons; Detailing of members and particular rules; Additional rules for precast concrete elements and structures; Plain and lightly reinforced concrete structures. The only main chapter which is not recalled in an equal or very similar manner in the current code is the chapter dedicated to Lightweight aggregate concrete structures, which became Annex M in FprEN1992-1-1:2022. Indeed, also the structure of the annexes is very similar between the two documents, despite the number of them has increased significantly with the proposed version, passing from J (10) annexes to S (19) annexes. The large number of changes in the new document version also makes the comparison and the interpretation of the new document rather complex. This consideration has repercussions over the compilers of informatic codes solving structural issues, as well as over design practitioners which created their own design instruments: they will need to deeply revisit their codes/spreadsheets to adapt the many changes from simple terms to completely different formulations and approaches to usual structural design issues. It is also recalled that some chapters, especially those concerning the resistance to shear and punching shear of unreinforced members, appear being more complex and more possibly subjected to interpretation with respect to the previous version of the code.

A quite different scenario concerns the document about fire behaviour and resistance FprEN1992-1-2:2022: the total number of pages of the new document is 88, relevantly less with respect to the 100 pages of the current version, denoting a larger synthesis of the information contained. Also in this case, apart from a more structured introduction and section about terms and definitions, the scheme of the new document remains the same, with some changes in the end of it, where information about simplified design methods, advanced design methods, and spalling, previously contained in specific annexes, was moved (reasonably) to main chapters. Moreover, as previously discussed, the changes between these documents are limited and clearly introduced, making it rather easy to understand and correctly interpret them.

It can be finally observed that all documents share a similar style, which makes easier their comparison and in general the understanding of the differences introduced with the proposed new versions, although the document is clearly devoted to instructed technicians and not to a wider audience.

21.5 Final remarks and future work

As a final consideration, it can be noted that the differences between the two standards are many, and that they include practically all the steps of the design process, starting from the definition of the constitutive laws of the structural materials, down to the definition of details such as the anchorage length. These differences are reflected in the comparative design that was carried out. Nevertheless, the final outcome of the design in terms of element dimensions and reinforcement

ratios is reasonably similar between the two standards, with deviations which are in the end limited to few percentage points. To be noted that the differences were found sometimes in favour (smaller volume of materials) of one standard, and sometimes in favour of the other, proving a further balancing between the economical and environmental impact of precast concrete elements designed following the two standards.

Future developments of the work may include an update at the time of the official publication of the new Eurocode 2, when the current draft may have been subjected to modification, and also in the phase of identification of the Nationally Determined Parameters (NDPs) and Non-Contradictory Complementary Information (NCCI) to be selected within the draft of the national annexes by the several mirror groups of the European member countries. Moreover, it would be interesting to extend the comparison also to elements having longer span, typical of industrial buildings.