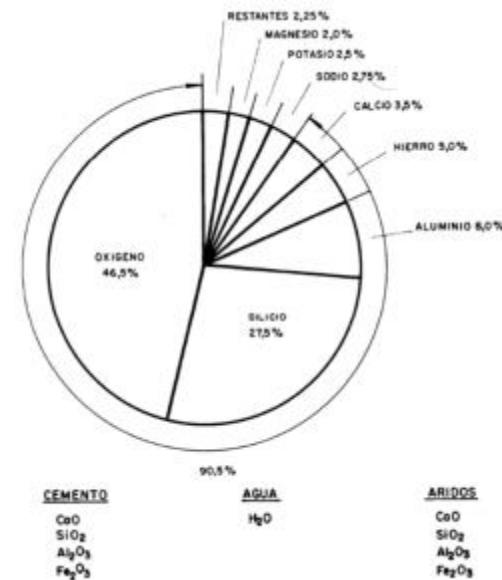


METHODOLOGY TO EVALUATE THE SERVICE LIFE OF CONCRETE

José Rodriguez Soalleiro – Technical Adviser ANDECE
Alejandro López Vidal – Technical Director ANDECE

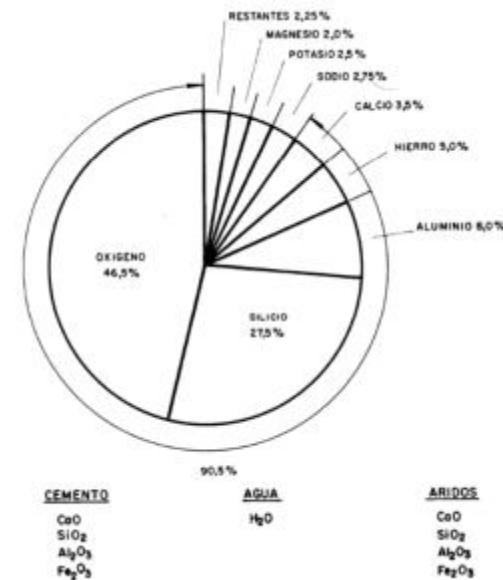

M·AGRIPPA L F·COSTERTIVM·FECIT

(Def. EN 13369) Ability of a precast concrete product to satisfy, with anticipated maintenance, the design performance requirements during its design working life under the influence of the expected environmental actions

Figure.- Pantheon, Rome (14 A.D.)

CONCRETE

- Universal and local material → There are aggregates and raw materials everywhere to make cement and therefore concrete
- Use concrete $\geq 2 \cdot \Sigma$ other materials altogether


(SUSTAINABLE) CONCRETE

- **Massive material → good overall performance in terms of:**

- mechanical capacity
- **DURABILITY**
- thermal inertia
- fire resistance
- acoustic airborne noise
- recyclable...

- **Moldable (design) → Optimization**

- **Able to incorporate new raw materials to REDUCE THE ENVIRONMENTAL IMPACTS**

Aspects to fulfil the **DURABILITY** of elements

1) Identification of the mechanisms of damage, depending on the type of exposure

2) Concrete mix design:

Selection of materials

W/C ratio

cement content

resistance

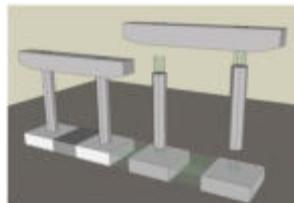
concrete cover

HOW TO MEET THE SERVICE LIFE?

Aspects to fulfil/improve the **DURABILITY** of the structure

- **Selection of suitable structural forms (structural design)**

Specific measures against aggressiveness:


- **Additional measures in the case of prestressed reinforcement**
- **Use of surface protection systems**
- **Use of corrosion inhibitor products**
- **Use of reinforcements with improved performance against corrosion**

PRECAST (CONCRETE) PRODUCT

(Def. EN 13369) Product which is made of (*reinforced/prestressed*) concrete

- Manufactured in accordance with a specific product standard
- In a place different from the final destination of use,
- Protected from adverse weather conditions during production
- Result of an industrial process under a factory production control system
- Have the possibility of sorting before delivery

How do the different standards tackle the durability?

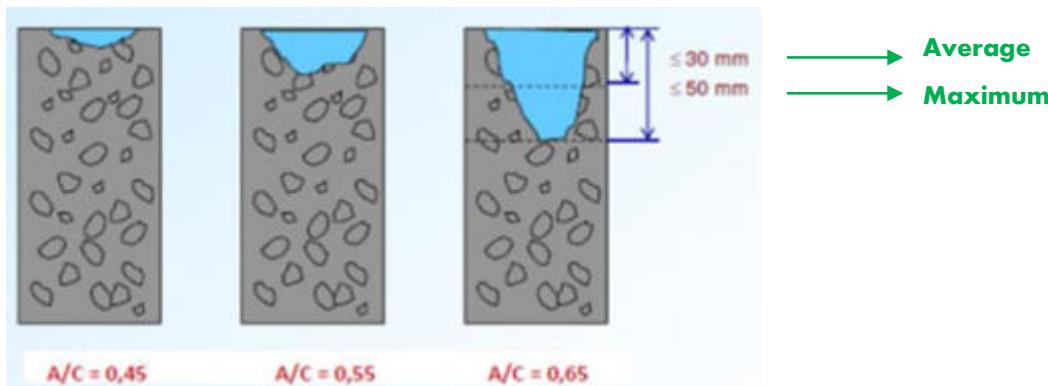
- Most of them, based on EN 1992-1-1 and EN 206, set prescriptions in W/C ratio, minimum cement content, minimum resistance and concrete cover, depending on the exposure classes.
- All the aspects mentioned for the precast concrete mean that we can have better performance than the standard ones.

How can we appreciate that improvement?

DURABILITY APPROACH

- **Durability requirements under Spanish technical regulation:**
 - 0. Fulfil strictly the durability parameters of the product standards (i.e. hEN's → EN 206)
 - 1. **UNE 127050 → EN 12390-8 Testing hardened concrete - Part 8: Depth of penetration of water under pressure**
 - 2. **Annex 12 of Spanish Structural Code**

Methodology to evaluate the service life of concrete (1)


Bases on Spanish standard UNE 127 050 "Industrialized Systems for Buildings Constructed from Prefabricated Concrete Elements"

- **Based on a feature of the finished concrete**
- **Establishes a relationship between:**
 - ✓ **the service life of a concrete element and**
 - ✓ **the result of the water penetration test under pressure (EN 12390-8)**

Methodology to evaluate the service life of concrete (1)

➤ The specifications limits for depth penetration in the test are:

Exposure class	Máximo	Average
XS1, XS2, XD1, XD2, XD3, XF1, XF2, XF3, XF4, XM, XA1 (always)	50 mm	30 mm
XA2 (reinforced and non-reinforced elements)		
XS3, XA3 (always)		
XA2 (prestressed elements)	30 mm	20 mm

Methodology to evaluate the service life of concrete (1)

Estimation of service life based on water penetration test under pressure (UNE 127 050)

- **If the concrete complies with the values that for each exposure class include the durability specifications in terms of minimum amount of cement, maximum water/cement ratio and minimum resistance,**
- **and if in the under pressure penetration test according to EN 12390-8, the results obtained are better than the minimums**

an improved service life can be attributed to the concrete design according to the next two tables (the minimum value of both)

Methodology to evaluate the service life of concrete (1)

Estimation of service life based on water penetration test under pressure (UNE 127 050)

Máximo penetration (mm)	Nominal service life (years)
50	50
49	52
48	54
47	56
46	59
45	62
44	64
43	68
42	71
41	74
40	78
39	82
38	86
37	91
36	96
35	102
34	108
33	115
32	122
31	130
30	139
29	148
28	159

Average penetration (mm)	Nominal service life (years)
30	50
29	53
28	57
27	62
26	66
25	72
24	78
23	85
22	93
21	102
20	112
19	125
18	139
17	156

Methodology to evaluate the service life of concrete (1)

Estimation of service life based on water penetration test under pressure (UNE 127 050)

Máximo penetration (mm)	Nominal service life (years)
50	50
49	52
48	54
47	56
46	59
45	62
44	64
43	68
42	71
41	74
40	78
39	82
38	86
37	91
36	96
35	102
34	108
33	115
32	122
31	130
30	139
29	148
28	159

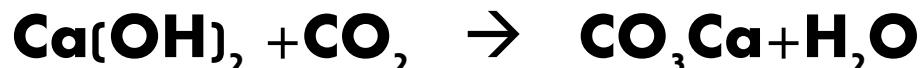
Average penetration (mm)	Nominal service life (years)
30	50
29	53
28	57
27	62
26	66
25	72
24	78
23	85
22	93
21	102
20	112
19	125
18	139
17	156

**Check the values of both tables
and take the lowest one**

Methodology to evaluate the service life of concrete (2)

➤ **Other alternative is the Annex 12 of Spanish Structural Code**

➤ **It provides the basis to calculate the time in which:**


- ***corrosion by carbonation* (exposure XC) or**
- ***corrosion by chlorides ions* (exposure XS and XD)**

damages the reinforced/prestressed concrete, to estimate its residual service life

Methodology to evaluate the service life of concrete (2)

Carbonation: If CO_2 penetrates the concrete, it reacts with the portlandite and forms calcium carbonate which, although it makes the concrete more compact, causes a reduction in pH and the possible depassivation of the reinforcement.

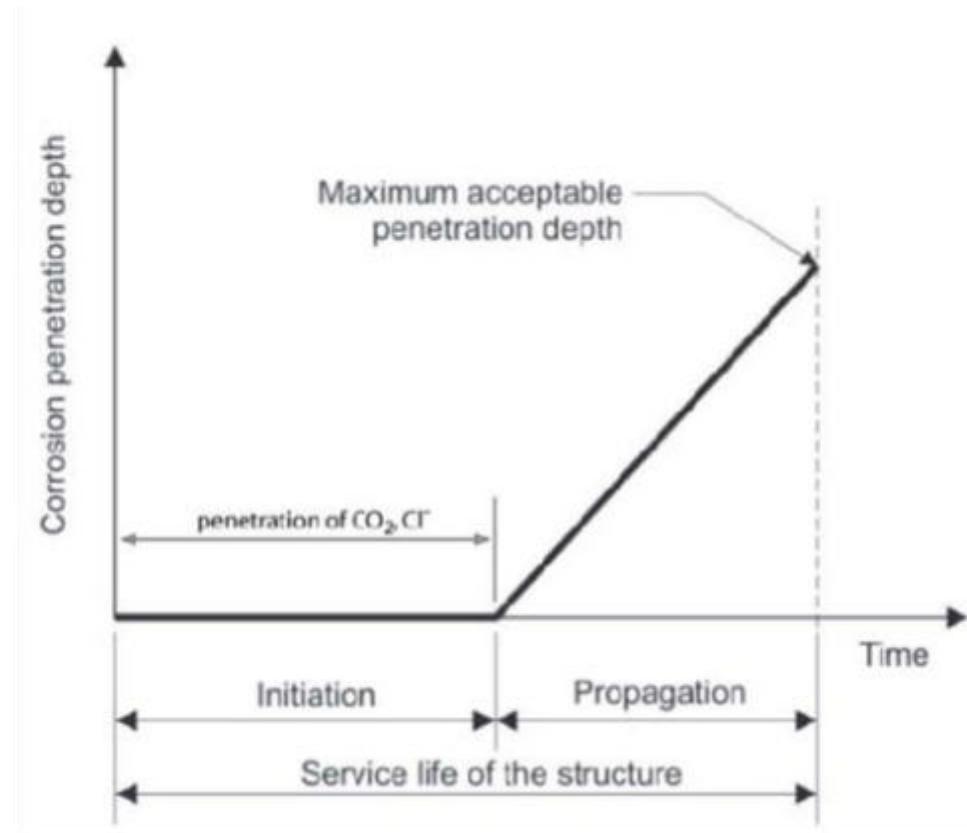
Chlorides: If they reach the reinforcement, they depassivate it and cause corrosion, even at high pH values.

Methodology to evaluate the service life of concrete (2)

Annex 12 of Spanish Structural Code

Concrete deterioration is a two-stage process: initiation and propagation

And the service life is the sum of both:


$$t_{est} = t_{inic} + t_{prop}$$

Methodology to evaluate the service life of concrete (2)

Initiation: Till the damage begins

Propagation: Till the damage in reinforcement is considered unacceptable

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Carbonation (1)

For elements located in XC exposure classes, corrosion induced by carbonation, the initiation period is:

$$t_{inic} = (c / k_{ap,carb})^2$$

where

c minimum concrete cover (mm)

$k_{ap,carb}$ apparent carbonation coefficient (mm/year^{1/2})

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Carbonation (1)

The value of $k_{ap,carb}$ can be determined experimentally (UNE 83993-1)

In absence of experimental data, it can be estimate from the expression:

$$k_{ap,carb} = C_{env} \cdot C_{air} \cdot a \cdot (f_{ck} + 8)^b$$

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Carbonation (1)

c_{env} the environment coefficient

Environment	c_{env}
Protected from rain	1
Exposed to rain	0.5
Buried elements, above the phreatic level	0.3
Buried elements, below the phreatic level	0.2

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Carbonation (1)

c_{air} the aeration coefficient

Occluded air	c_{air}
< 4.5 %	1
$\geq 4.5 \%$	0.7

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Carbonation (1)

Parameters “a” and “b” to estimate the apparent carbonation coefficient

Binder (cement)	a	b
Portland cement	1800	-1.7
Portland cement + 28 % fly ash	360	-1.2
Portland cement + 9 % silica fume	400	-1.2

Methodology to evaluate the service life of concrete (2)

Table G.1 — k-factors [mm/year^{0,5}] for calculation of depth of carbonation for different concrete strength classes (cylinder) and exposure conditions and also degree of carbonation for different exposure conditions (Derived from [39])

**“k” values within
EN 16 757 ***

* **Sustainability of construction
works - Environmental
product declarations -
Product Category Rules for
concrete and concrete
elements**

Concrete strength class	< 16 MPa	16 to 20 MPa	25 to 35 MPa	> 35 MPa	Degree of carbonation (D _c)
Parameters	Value of k-factor, in mm/year ^{0,5}				Percentage
Civil engineering structures					
Exposed to rain		2,7	1,6	1,1	85
Sheltered from rain		6,6	4,4	2,7	75
In ground ^a		1,1	0,8	0,5	85
Buildings					
<u>Outdoor</u>					
Exposed to rain	5,5	2,7	1,6	1,1	85
Sheltered from rain	11	6,6	4,4	2,7	75
<u>Indoor in dry climate</u> ^c					
With cover ^b	11,6	6,9	4,6	2,7	40
Without	16,5	9,9	6,6	3,8	40
In ground ^a		1,1	0,8	0,5	85

^a Under groundwater level k = 0,2.
^b Paint or wall paper. (Under tiles, parquet and laminate k is considered to be 0.)
^c Indoor in dry climate means that the RH is normally between 45 % and 65 %.

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

For elements located in exposure classes

XS, corrosion induced by chlorides from sea water, or

XD, corrosion induced by chlorides other than from sea water,

To determinate the advance of chlorides ions inside the concrete as function of time, we can use the following expression, based on the 2^g Fick´s diffusion law:

$$C_{th} = C_b + (C_s - C_b) \cdot \left[1 - \operatorname{erf} \left(\frac{c}{2\sqrt{D_{app,C}(t) \cdot t}} \right) \right]$$

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

C_{th} limit content of chlorides ions in concrete that causes the beginning of corrosion in reinforcement

We have to probe t values and check that the limits are not exceeded because the presence of error function

$$C_{th} = C_b + (C_s - C_b) \cdot \left[1 - erf \left(\frac{c}{2\sqrt{D_{app,C}(t) \cdot t}} \right) \right]$$

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

With the value of the required service life, we get C_{th} value that mustn't exceed the established in the following table according to the exposition classes.

Exposure class	C_{th}
XS1	0.60
XS2	0.80
XS3	0.60
XD1	0.60
XD2	0.60
XD3	0.40

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

Other parameters involved are:

C_b chlorides content from the materials used in the manufacturing of concrete, incorporated from the mix, as % of cement weight

C_s chlorides content in the concrete surface, incorporated from external sources, as % of cement weight

Estimation of C_s chloride content in the concrete surface		
Exposure class	Distance L to the seaside m	C_s as % of concrete weight
XS1	Spray area, close to splashes	0.25
	Others $L \leq 5000$ m	0.15
XS2	-	0.40
XS3	-	0.50
XD1, XD2, XD3	-	0.40

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

***erf* error function**

***C* concrete cover (mm)**

***t* time until corrosion starts (years)**

$D_{app,c}(t)$ is the chlorides diffusion coefficient (mm²/year) that can be obtained experimentally for existing structures and for elements in the design phase through the expression

$$D_{app,c}(t) = k_e \cdot D_{app,c}(t_o) \cdot (t_o/t)^n$$

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

$D_{app,c}(t_0)$ depends of the w/c ratio and the type of cement

$D_{app,c}(t_0)$ diffusion chlorides coefficient got with NT BUILD 492 standard ($\times 10^{-12}$ m ² /s)				
Type of binder	w / c ratio			
	0.35	0.40	0.45	0.50
CEM I	-	8.9	10.0	15.8
CEM II/BV, CEM I with additions >22% fly ashes	-	5.6	6.9	9.0
CEM I with additions silica fume >5%	4.4	4.8	-	-
CEM III/B	-	1.4	1.9	2.8

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

n aging coefficient that can be derived from the next table

w / c ratio	Type of cement	n aging coefficient
0.4 – 0.5	CEM I	0.3
	Others	0.5

k_e coefficient that depends on the average environmental temperature, T_{real} (°C), according to the following expression:

$$k_e = e^{4800 \cdot (1/293 - 1/(273 + T_{real}))}$$

Methodology to evaluate the service life of concrete (2)

Models for the period of initiation: Chlorides (2)

The error function can be conservatively simplified by using the next parabola function:

$$C_{th} = C_b + (C_s - C_b) \cdot \left[1 - \frac{x}{\sqrt{12 \cdot D_{app,c}(t) \cdot t}} \right]^2$$

Methodology to evaluate the service life of concrete (2)

Model for the period of propagation

The model for the period of propagation is the same for Carbonation and Chlorides ions penetration and it has two parts:

- Corrosion time to crack the cover**
- Corrosion time for an unacceptable loss of diameter in the reinforcement**

Methodology to evaluate the service life of concrete (2)

Model for the period of propagation

Corrosion time to crack the cover

$$t_{\text{fis,corr}} = 80 \cdot c / (\varnothing \cdot \vartheta_{\text{corr}})$$

being:

c concrete cover (mm)

\varnothing reinforced diameter (mm)

ϑ_{corr} corrosion speed

Methodology to evaluate the service life of concrete (2)

Model for the period of propagation

ϑ_{corr} corrosion speed ($\mu\text{m/year}$), according to the table below:

Exposure class	ϑ_{corr} $\mu\text{m/year}$
XC1	1
XC2	4
XC3	2
XC4	5
XS1	20
XS2	4
XS3	50
XD1	35
XD2	20
XD3	35

Methodology to evaluate the service life of concrete (2)

Model for the period of propagation

Corrosion time for an unacceptable loss of diameter in the reinforcement

$$t_{secc,corr} = \Delta\varnothing_{lim} / \vartheta_{corr}$$

$\Delta\varnothing_{lim}$ is the variation in diameter due to corrosion of the reinforcement, which is considered inadmissible, expressed in μm

Carbonation example

Durability Annex 12 - Spanish Structural Code

Cross drainage work

Exposure class	XC2	Wet, rarely dry
		Minimum
c concrete cover mm	20	20
f_{ck} N/mm ²	40	25
f_{cm}	48	

Initiation corrosion carbonation for XC		
$t_i = (c/K_c)^2$	64,23	years
$K_c = c_{env} \cdot c_{air} \cdot a \cdot f_{cm}^b$	2,496	
Tabla A.12.3.1.a	c _{env}	1
Tabla A.12.3.1.b	c _{air}	1
Tabla A.12.3.1.c	a	1800
	b	-1,7
		Protected from rain
		Occluded air < 4,5%
		Portland cement

Propagation

Corrosion time to crack the cover		
$t_p = 80 \cdot c / (\emptyset \cdot v_{corr})$	20,00	years
∅ maximum reinforcement diameter	20	mm
v_{corr} (tabla A.12.4.1)	4	μm/year
Corrosion time for an unacceptable loss of diameter		
$t_{secc,corr} = \Delta \emptyset_{lim} / v_{corr}$	25,06	years
Admissible loss of steel area	1	%
Δ ∅ _{lim} en μm	100	

Results		
Initiation	64,23	years
Propagation	45,06	years
Expected service life	109,29	years

Carbonation example

Durability Annex 12 - Spanish Structural Code

Cross drainage work

Exposure class	XC2	Wet, rarely dry
		Minimum
c concrete cover mm	25	20
f_{ck} N/mm ²	40	25

f_{cm} 48

Initiation corrosion carbonation for XC		
	$t_i = (c/K_c)^2$	100,36 years
	$K_c = C_{env} \cdot C_{air} \cdot a \cdot f_{cm}^b$	2,496
Tabla A.12.3.1.a	C_{env}	1
Tabla A.12.3.1.b	C_{air}	1
Tabla A.12.3.1.c	a	1800
	b	-1,7
		Protected from rain
		Occluded air < 4,5%
		Portland cement

Propagation

Corrosion time to crack the cover		
$t_p = 80 \cdot c / (\emptyset \cdot v_{corr})$	25,00	years
\emptyset maximum reinforcement diameter	20	mm
v_{corr} (tabla A.12.4.1)	4	$\mu\text{m/year}$

Corrosion time for an unacceptable loss of diameter		
$t_{secc,corr} = \Delta \emptyset_{lim} / v_{corr}$	25,06	years
Admissible loss of steel area	1	%
$\Delta \emptyset_{lim}$ en μm	100	

Results		
Initiation	100,36	years
Propagation	50,06	years
Expected service life	150,42	years

Chlorides ions penetration example

Durability Annex 12 - Spanish Structural Code

Exposure class	XS2	Permanently submerged
	XA2	Moderately aggressive chemical environment
		Minimum values 100 years
	XS2	XA2
c concrete cover mm (Tables 44.2.1.1.a y b)	30	35
f_{ck} N/mm ² (table 43.2.1.b)	50	30
Cement / m³ (table 43.2.1.a)	350	325
w/c ratio	0,45	0,5
t₀	0,0767	
C_s % s/cement	2,629	

Submarine emissary

Initiation income cloryde ions for XS or XD	
Test time	54
C_b % s/cement	0,2
C_s % s/concrete (table A.12.3.2.a)	0,4
Cement / m³ (table 43.2.1.a)	350
n (table A.12.3.2.c)	0,5
Real temperature °C	15
D_{app,c(t₀)} (table A.12.3.2.b)	6,9
Results	
K _e	0,752
D _{app,c(t)}	6,171
erf parenthesis	0,822
erf value	0,755
C_{th}	0,795
C_{th} limit (table A.12.3.2.1.a)	0,8
valid	

Parabolic fórmula	
A	0,50
B	1965
C	6,54
t	42,75
C_{th}	0,871

Results		
Initiation	54,00	years
Propagation	65,04	years
Expected service life	119,04	years

Propagation

Corrosion time to crack the cover		
$t_p = 80 \cdot c / (\emptyset \cdot v_{corr})$	50,00	years
∅ maximun reinforcement diameter	12	mm
v_{corr} (table A.12.4.1)	4	μm/year

Corrosion time for an unacceptable loss of diameter		
$t_{secc,corr} = \Delta \emptyset_{lim} / v_{corr}$	15,04	years
Admissible loss of steel area	1	%
Δ ∅ _{lim} en μm	60	

Chlorides ions penetration example

Reducing the chlorides content from the materials from 0,2 to 0,1

Durability Annex 12 - Spanish Structural Code

Exposure class	XS2	Permanently submerged	
	XA2	Moderately aggressive chemical environment	
Minimum values 100 years			
	XS2	XA2	
c concrete cover mm (Tables 44.2.1.1.a y b)	30	35	not defined
f_{ck} N/mm ² (table 43.2.1.b)	50	30	30
Cement / m³ (table 43.2.1.a)	350	325	350
w/c ratio	0,45	0,5	0,5
t₀	0,0767		
C_s % s/cement	2,629		

Submarine emissary		
Initiation income cloryde ions for XS or XD		
Test time	70	
C_b % s/cement	0,1	
C_s % s/concrete (table A.12.3.2.a)	0,4	
Cement / m³ (table 43.2.1.a)	350	
n (table A.12.3.2.c)	0,5	
Real temperature °C	15	
D_{app,c(t₀)} (table A.12.3.2.b)	6,9	
Results		
K_e	0,752	
D_{app,c(t)}	5,420	
erf parenthesis	0,770	
erf value	0,724	
C_{th}	0,798	
C_{th} limit (table A.12.3.2.1.a)	0,8	valid

Parabolic fórmula	
A	0,53
B	1965
C	7,37
t	54,26
C_{th}	0,880

Results		
Initiation	70,00	years
Propagation	65,04	years
Expected service life	135,04	years

Propagation

Corrosion time to crack the cover		
$t_p = 80 \cdot c / (\emptyset \cdot v_{corr})$	50,00	years
∅ maximum reinforcement diameter	12	mm
v_{corr} (table A.12.4.1)	4	μm/year

Corrosion time for an unacceptable loss of diameter		
$t_{secc,corr} = \Delta \emptyset_{lim} / v_{corr}$	15,04	years
Admissible loss of steel area	1	%
$\Delta \emptyset_{lim}$ en μm	60	

➤ **Andece has developed a tool to facilitate the application of this annex to their members www.andece.org**

INICIACIÓN CORROSIÓN POR CARBONATACIÓN PARA XC

$$C_{env} \text{ (1)} = 1$$

$$C_{air} \text{ (1)} = 1$$

$$a \text{ (1)} = 1800$$

$$b \text{ (1)} = -1,7$$

$$t_i = (c / Kc)^2 \text{ años}$$

$$Kc = C_{env} \cdot C_{air} \cdot a \cdot b_{cm}$$

INICIACIÓN INGRESO IONES CLORURO PARA XS Ó XD

→ Tiempo para tanteo años

$C_b \text{ \% s/cemento}$

$C_s \text{ \% s/hormigón}$

$n \text{ (1)}$

Temperatura real

$D_{app,c}(t_0) \text{ (1)}$

$C_{th} \text{ límite}$

$$K_c$$

$$D_{app,c}(t)$$

$$\text{Paréntesis de erf}$$

$$\text{Valor de erf}$$

$$C_{th}$$

PROPAGACIÓN
TIEMPO DE CORROSIÓN PARA LA FISURACIÓN DEL RECUERMIENTO

Ø diámetro armadura máximo

$\epsilon_{corr} \text{ (1)}$

$t_p = 80 \cdot c / (\phi - \epsilon_{corr})$

TIEMPO DE CORROSIÓN POR PÉRDIDA DE DIÁMETRO INADMISIBLE

Pérdida admisible área acero

$t_{secc,corr} = \Delta\phi_{lim} / \epsilon_{corr}$

$\Delta\phi_{lim}$

RESULTADOS CORROSIÓN POR CARBONATACIÓN

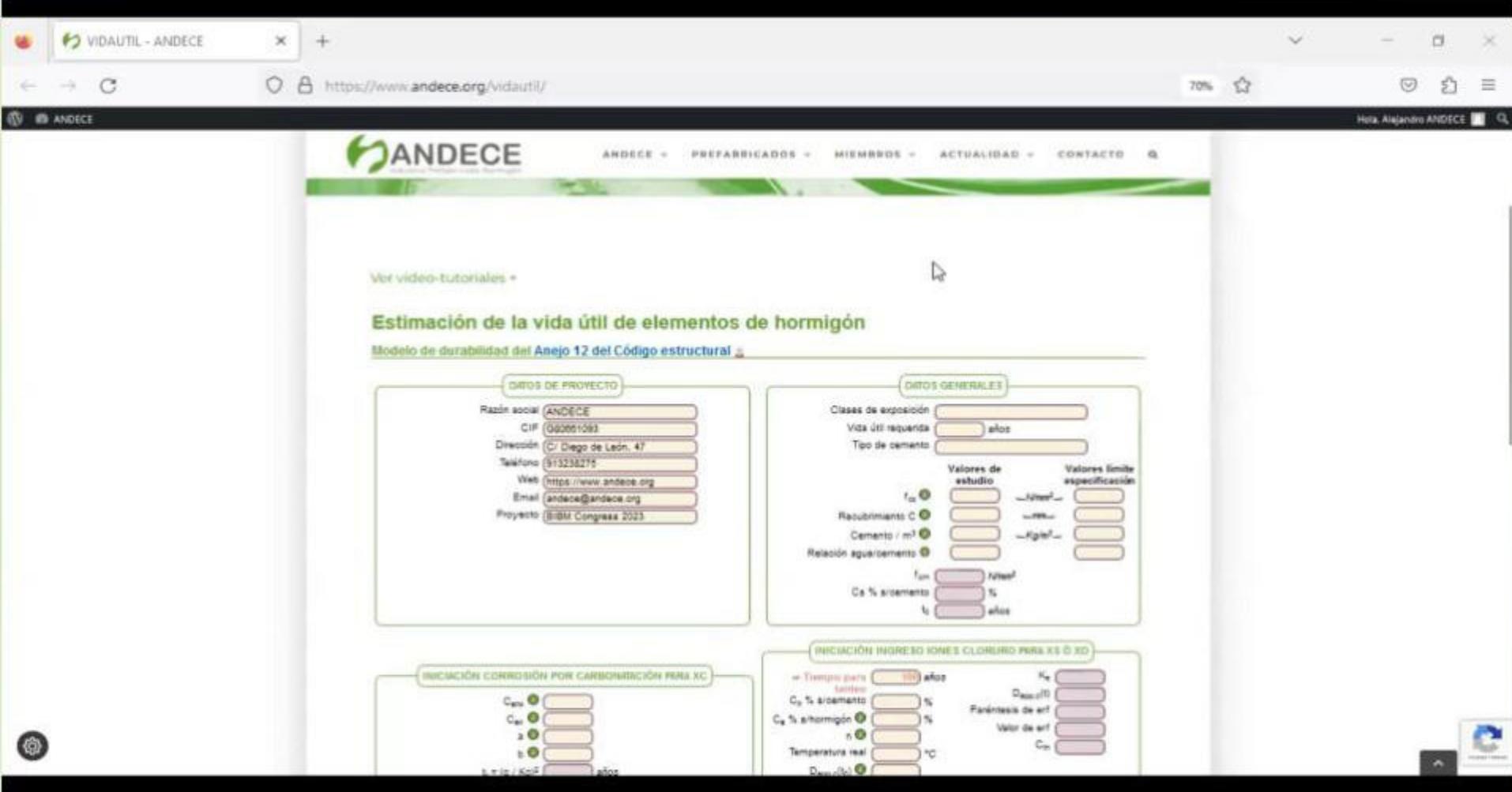
Tiempo de vida útil por carbonatación

CALCULAR

 Informe (tablas)

 Informe (texto)

RESULTADOS INGRESO IONES CLORURO

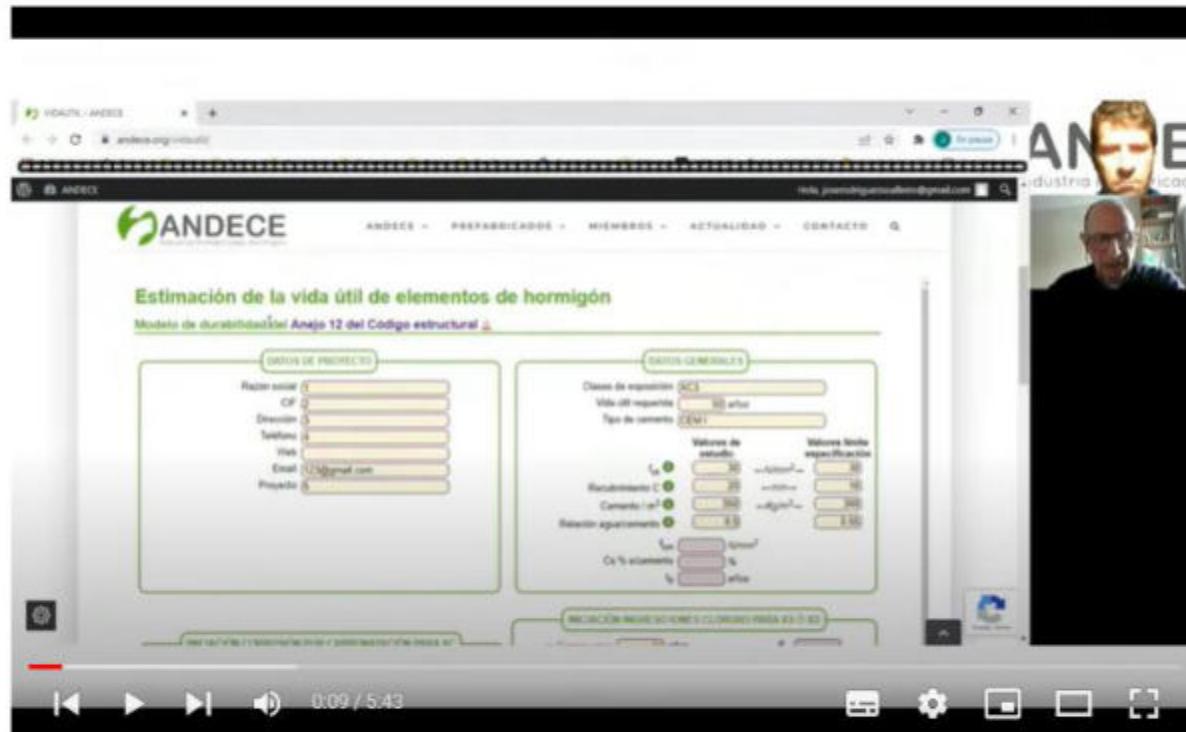

Tiempo de vida útil por cloruros

CALCULAR

 Informe (tablas)

 Informe (texto)

CARBONATION EXAMPLE



The screenshot shows the 'Vida Útil - ANDECE' software interface. The title bar includes the logo and the URL <https://www.andece.org/vidautil/>. The main content is titled 'Estimación de la vida útil de elementos de hormigón' (Estimation of the useful life of concrete elements) and 'Modelo de durabilidad del Anexo 12 del Código estructural' (Durability model of Annex 12 of the Structural Code). The interface is divided into several sections:

- DATOS DE PROYECTO** (Project Data):
 - Razón social: ANDECE
 - CIF: 002661093
 - Dirección: C/ Diego de León, 47
 - Teléfono: 913238275
 - Web: <https://www.andece.org>
 - Email: andece@andece.org
 - Proyecto: B-BM Congress 2023
- DATOS GENERALES** (General Data):
 - Clases de exposición
 - Vida útil requerida: años
 - Tipo de cemento
 - Valores de estudio
 - Valores límite especificación
 - f_{ck} : N/mm²
 - Racubrimiento C: mm
 - Cemento / m³: kg/m³
 - Relación aguarrasamiento:
 - f_{ckm} : N/mm²
 - Ca % arena: %
 - t_0 : años
- INICIACIÓN INGRESO IONES CLORURO PARA X1 O X2** (Initiation of Chloride Ion Ingress for X1 or X2):
 - Time to initiation: años
 - C_{20} % arena: %
 - C_x % al hormigón: %
 - n:
 - Temperature real: °C
 - $D_{20}(t_0)$:
 - K_t :
 - $D_{20}(t_0)$:
 - Parámetros de erf:
 - Valor de erf:
 - C_{20} :
- INICIACIÓN INGRESO IONES CLORURO PARA X3 O X4** (Initiation of Chloride Ion Ingress for X3 or X4):
 - Time to initiation: años
 - C_{20} % arena: %
 - C_x % al hormigón: %
 - n:
 - Temperature real: °C
 - $D_{20}(t_0)$:
 - K_t :
 - $D_{20}(t_0)$:
 - Parámetros de erf:
 - Valor de erf:
 - C_{20} :

MORE EXAMPLES

Buscar

ANDECE

Estimación de la vida útil de elementos de hormigón

Modelo de durabilidad del Anejo 12 del Código estructural

DATOS DE PROYECTO

- Requerimientos:
- CP:
- Dirección:
- Teléfono:
- Web:
- Email: andece.org@gmail.com
- Proyecto:

DATOS DE RESISTENCIA

- Clase de exposición: G23
- Vida útil requerida: 50 años
- Tipo de concreto: CEM1
- Valores de resistencia:

 - t_{25} : 300
 - t_{50} : 300
 - t_{75} : 300
 - t_{100} : 300

- Recubrimiento: C
- Cemento: CEM1
- Revestimiento:

 - t_{25} : 300
 - t_{50} : 300
 - t_{75} : 300
 - t_{100} : 300

- Cu % elemento:
- t_{25} : 300
- t_{50} : 300
- t_{75} : 300
- t_{100} : 300

INICIACIÓN DE LA CORROSIÓN Y CLORURO: Página A3-100

0:09 / 5:43

Presentación del Anejo 12 del Código Estructural - Estimación de vida útil de elementos de hormigón

ANDECE Prefabricado Ho...
667 suscriptores

Suscripto

2

1

Compartir

Aplicación de programas de cálculo ...
Andece Prefabricado Hormigon - 15/20

- Presentación del Anejo 12 del Código Estructural ...
Andece Prefabricado Hormigon
- Corrosión por carbonatación - Periodo de iniciación
Andece Prefabricado Hormigon
- Corrosión por carbonatación - Iniciación y propagación
Andece Prefabricado Hormigon
- Corrosión por cloruros - Periodo de iniciación
Andece Prefabricado Hormigon
- Corrosión por cloruros - Iniciación y propagación
Andece Prefabricado Hormigon
- Consideraciones finales del Anejo 12 del Código...

Videos at YouTube ANDECE channel: <https://bit.ly/4669cbL>

CONCLUSIONS (1)

➤ **Aspects to emphasize if we use this Annex:**

- **We can quantify the service life**
- **We can design elements with the service life we want to get**

**Structural
performance**

**Structural
durability**

CONCLUSIONS (2)

- **If we improve the minimum requirements of the standards, it allows us to reduce the concrete cover**
- **Let solve cases of structures in very aggressive environments where the code provisions does not provide a fully defined durability strategy**
- **If we design elements with a longer service life, we can amortize the environmental impacts by dividing them into a much longer period**

	Case 1	Case 2
GWP Global Warming Potential (all the life cycle)		Environmental footprint 150 kg CO₂eq/Tn
Service life (years)	50	↑ 150
GWP/year (kg CO₂eq/Tn/year)	3	↓ 1

Buscador de fabricantes

www.andece.org/directorio-de-negocios/

Miembros adheridos

www.andece.org/miembros-adheridos/

Cursos ANDECE

www.andece.org/cursos-y-master-andece/

Contacto

www.andece.org/contacto/

andece@andece.org

www.premioandece.com

METHODOLOGY TO EVALUATE THE SERVICE LIFE OF CONCRETE

José Rodriguez Soalleiro – Technical Adviser ANDECE
Alejandro López Vidal – Technical Director ANDECE

Many thanks for your attention...

Any question?